Source code for adios4dolfinx.original_checkpoint

# Copyright (C) 2024 Jørgen Schartum Dokken
#
# This file is part of adios4dolfinx
#
# SPDX-License-Identifier:    MIT

from __future__ import annotations

import typing
from pathlib import Path

from mpi4py import MPI

import adios2
import dolfinx
import numpy as np

from .adios2_helpers import resolve_adios_scope
from .comm_helpers import numpy_to_mpi
from .structures import FunctionData, MeshData
from .utils import (
    compute_insert_position,
    compute_local_range,
    index_owner,
    unroll_dofmap,
    unroll_insert_position,
)
from .writers import write_function, write_mesh

adios2 = resolve_adios_scope(adios2)

__all__ = ["write_function_on_input_mesh", "write_mesh_input_order"]


def create_original_mesh_data(mesh: dolfinx.mesh.Mesh) -> MeshData:
    """
    Store data locally on output process
    """

    # 1. Send cell indices owned by current process to the process which owned its input

    # Get the input cell index for cells owned by this process
    num_owned_cells = mesh.topology.index_map(mesh.topology.dim).size_local
    original_cell_index = mesh.topology.original_cell_index[:num_owned_cells]

    # Compute owner of cells on this process based on the original cell index
    num_cells_global = mesh.topology.index_map(mesh.topology.dim).size_global
    output_cell_owner = index_owner(mesh.comm, original_cell_index, num_cells_global)
    local_cell_range = compute_local_range(mesh.comm, num_cells_global)

    # Compute outgoing edges from current process to outputting process
    # Computes the number of cells sent to each process at the same time
    cell_destinations, send_cells_per_proc = np.unique(output_cell_owner, return_counts=True)
    cell_to_output_comm = mesh.comm.Create_dist_graph(
        [mesh.comm.rank],
        [len(cell_destinations)],
        cell_destinations.tolist(),
        reorder=False,
    )
    cell_sources, cell_dests, _ = cell_to_output_comm.Get_dist_neighbors()
    assert np.allclose(cell_dests, cell_destinations)

    # Compute number of recieving cells
    recv_cells_per_proc = np.zeros_like(cell_sources, dtype=np.int32)
    if len(send_cells_per_proc) == 0:
        send_cells_per_proc = np.zeros(1, dtype=np.int32)
    if len(recv_cells_per_proc) == 0:
        recv_cells_per_proc = np.zeros(1, dtype=np.int32)
    send_cells_per_proc = send_cells_per_proc.astype(np.int32)
    cell_to_output_comm.Neighbor_alltoall(send_cells_per_proc, recv_cells_per_proc)
    assert recv_cells_per_proc.sum() == local_cell_range[1] - local_cell_range[0]
    # Pack and send cell indices (used for mapping topology dofmap later)
    cell_insert_position = compute_insert_position(
        output_cell_owner, cell_destinations, send_cells_per_proc
    )
    send_cells = np.empty_like(cell_insert_position, dtype=np.int64)
    send_cells[cell_insert_position] = original_cell_index
    recv_cells = np.empty(recv_cells_per_proc.sum(), dtype=np.int64)
    send_cells_msg = [send_cells, send_cells_per_proc, MPI.INT64_T]
    recv_cells_msg = [recv_cells, recv_cells_per_proc, MPI.INT64_T]
    cell_to_output_comm.Neighbor_alltoallv(send_cells_msg, recv_cells_msg)
    del send_cells_msg, recv_cells_msg, send_cells

    # Map received cells to the local index
    local_cell_index = recv_cells - local_cell_range[0]

    # 2. Create dofmap based on original geometry indices and re-order in the same order as original
    # cell indices on output process

    # Get original node index for all nodes (including ghosts) and convert dofmap to these indices
    original_node_index = mesh.geometry.input_global_indices
    _, num_nodes_per_cell = mesh.geometry.dofmap.shape
    local_geometry_dofmap = mesh.geometry.dofmap[:num_owned_cells, :]
    global_geometry_dofmap = original_node_index[local_geometry_dofmap.reshape(-1)]

    # Unroll insert position for geometry dofmap
    dofmap_insert_position = unroll_insert_position(cell_insert_position, num_nodes_per_cell)

    # Create and commmnicate connecitivity in original geometry indices
    send_geometry_dofmap = np.empty_like(dofmap_insert_position, dtype=np.int64)
    send_geometry_dofmap[dofmap_insert_position] = global_geometry_dofmap
    del global_geometry_dofmap
    send_sizes_dofmap = send_cells_per_proc * num_nodes_per_cell
    recv_sizes_dofmap = recv_cells_per_proc * num_nodes_per_cell
    recv_geometry_dofmap = np.empty(recv_sizes_dofmap.sum(), dtype=np.int64)
    send_geometry_dofmap_msg = [send_geometry_dofmap, send_sizes_dofmap, MPI.INT64_T]
    recv_geometry_dofmap_msg = [recv_geometry_dofmap, recv_sizes_dofmap, MPI.INT64_T]
    cell_to_output_comm.Neighbor_alltoallv(send_geometry_dofmap_msg, recv_geometry_dofmap_msg)
    del send_geometry_dofmap_msg, recv_geometry_dofmap_msg

    # Reshape dofmap and sort by original cell index
    recv_dofmap = recv_geometry_dofmap.reshape(-1, num_nodes_per_cell)
    sorted_recv_dofmap = np.empty_like(recv_dofmap)
    sorted_recv_dofmap[local_cell_index] = recv_dofmap

    # 3. Move geometry coordinates to input process
    # Compute outgoing edges from current process and create neighbourhood communicator
    # Also create number of outgoing cells at the same time
    num_owned_nodes = mesh.geometry.index_map().size_local
    num_nodes_global = mesh.geometry.index_map().size_global
    output_node_owner = index_owner(
        mesh.comm, original_node_index[:num_owned_nodes], num_nodes_global
    )

    node_destinations, send_nodes_per_proc = np.unique(output_node_owner, return_counts=True)
    send_nodes_per_proc = send_nodes_per_proc.astype(np.int32)
    geometry_to_owner_comm = mesh.comm.Create_dist_graph(
        [mesh.comm.rank],
        [len(node_destinations)],
        node_destinations.tolist(),
        reorder=False,
    )

    node_sources, node_dests, _ = geometry_to_owner_comm.Get_dist_neighbors()
    assert np.allclose(node_dests, node_destinations)

    # Compute send node insert positions
    send_nodes_position = compute_insert_position(
        output_node_owner, node_destinations, send_nodes_per_proc
    )
    unrolled_nodes_positiion = unroll_insert_position(send_nodes_position, 3)

    send_coordinates = np.empty_like(unrolled_nodes_positiion, dtype=mesh.geometry.x.dtype)
    send_coordinates[unrolled_nodes_positiion] = mesh.geometry.x[:num_owned_nodes, :].reshape(-1)

    # Send and recieve geometry sizes
    send_coordinate_sizes = (send_nodes_per_proc * 3).astype(np.int32)
    recv_coordinate_sizes = np.zeros_like(node_sources, dtype=np.int32)
    geometry_to_owner_comm.Neighbor_alltoall(send_coordinate_sizes, recv_coordinate_sizes)

    # Send node coordinates
    recv_coordinates = np.empty(recv_coordinate_sizes.sum(), dtype=mesh.geometry.x.dtype)
    mpi_type = numpy_to_mpi[recv_coordinates.dtype.type]
    send_coord_msg = [send_coordinates, send_coordinate_sizes, mpi_type]
    recv_coord_msg = [recv_coordinates, recv_coordinate_sizes, mpi_type]
    geometry_to_owner_comm.Neighbor_alltoallv(send_coord_msg, recv_coord_msg)
    del send_coord_msg, recv_coord_msg

    # Send node ordering for reordering the coordinates on output process
    send_nodes = np.empty(num_owned_nodes, dtype=np.int64)
    send_nodes[send_nodes_position] = original_node_index[:num_owned_nodes]

    recv_indices = np.empty(recv_coordinate_sizes.sum() // 3, dtype=np.int64)
    send_nodes_msg = [send_nodes, send_nodes_per_proc, MPI.INT64_T]
    recv_nodes_msg = [recv_indices, recv_coordinate_sizes // 3, MPI.INT64_T]
    geometry_to_owner_comm.Neighbor_alltoallv(send_nodes_msg, recv_nodes_msg)

    # Compute local ording of received nodes
    local_node_range = compute_local_range(mesh.comm, num_nodes_global)
    recv_indices -= local_node_range[0]

    # Sort geometry based on input index and strip to gdim
    gdim = mesh.geometry.dim
    recv_nodes = recv_coordinates.reshape(-1, 3)
    geometry = np.empty_like(recv_nodes)
    geometry[recv_indices, :] = recv_nodes
    geometry = geometry[:, :gdim].copy()
    assert local_node_range[1] - local_node_range[0] == geometry.shape[0]
    cmap = mesh.geometry.cmap

    # NOTE: Could in theory store partitioning information, but would not work nicely
    # as one would need to read this data rather than the xdmffile.
    return MeshData(
        local_geometry=geometry,
        local_geometry_pos=local_node_range,
        num_nodes_global=num_nodes_global,
        local_topology=sorted_recv_dofmap,
        local_topology_pos=local_cell_range,
        num_cells_global=num_cells_global,
        cell_type=mesh.topology.cell_name(),
        degree=cmap.degree,
        lagrange_variant=cmap.variant,
        store_partition=False,
        partition_processes=None,
        ownership_array=None,
        ownership_offset=None,
        partition_range=None,
        partition_global=None,
    )


def create_function_data_on_original_mesh(
    u: dolfinx.fem.Function, name: typing.Optional[str] = None
) -> FunctionData:
    """
    Create data object to save with ADIOS2
    """
    mesh = u.function_space.mesh

    # Compute what cells owned by current process should be sent to what output process
    # FIXME: Cache this
    num_owned_cells = mesh.topology.index_map(mesh.topology.dim).size_local
    original_cell_index = mesh.topology.original_cell_index[:num_owned_cells]

    # Compute owner of cells on this process based on the original cell index
    num_cells_global = mesh.topology.index_map(mesh.topology.dim).size_global
    output_cell_owner = index_owner(mesh.comm, original_cell_index, num_cells_global)
    local_cell_range = compute_local_range(mesh.comm, num_cells_global)

    # Compute outgoing edges from current process to outputting process
    # Computes the number of cells sent to each process at the same time
    cell_destinations, send_cells_per_proc = np.unique(output_cell_owner, return_counts=True)
    send_cells_per_proc = send_cells_per_proc.astype(np.int32)
    cell_to_output_comm = mesh.comm.Create_dist_graph(
        [mesh.comm.rank],
        [len(cell_destinations)],
        cell_destinations.tolist(),
        reorder=False,
    )
    cell_sources, cell_dests, _ = cell_to_output_comm.Get_dist_neighbors()
    assert np.allclose(cell_dests, cell_destinations)

    # Compute number of recieving cells
    recv_cells_per_proc = np.zeros_like(cell_sources, dtype=np.int32)
    send_cells_per_proc = send_cells_per_proc.astype(np.int32)
    cell_to_output_comm.Neighbor_alltoall(send_cells_per_proc, recv_cells_per_proc)
    assert recv_cells_per_proc.sum() == local_cell_range[1] - local_cell_range[0]

    # Pack and send cell indices (used for mapping topology dofmap later)
    cell_insert_position = compute_insert_position(
        output_cell_owner, cell_destinations, send_cells_per_proc
    )
    send_cells = np.empty_like(cell_insert_position, dtype=np.int64)
    send_cells[cell_insert_position] = original_cell_index
    recv_cells = np.empty(recv_cells_per_proc.sum(), dtype=np.int64)
    send_cells_msg = [send_cells, send_cells_per_proc, MPI.INT64_T]
    recv_cells_msg = [recv_cells, recv_cells_per_proc, MPI.INT64_T]
    cell_to_output_comm.Neighbor_alltoallv(send_cells_msg, recv_cells_msg)
    del send_cells_msg, recv_cells_msg

    # Map received cells to the local index
    local_cell_index = recv_cells - local_cell_range[0]

    # Pack and send cell permutation info
    mesh.topology.create_entity_permutations()
    cell_permutation_info = mesh.topology.get_cell_permutation_info()[:num_owned_cells]
    send_perm = np.empty_like(send_cells, dtype=np.uint32)
    send_perm[cell_insert_position] = cell_permutation_info
    recv_perm = np.empty_like(recv_cells, dtype=np.uint32)
    send_perm_msg = [send_perm, send_cells_per_proc, MPI.UINT32_T]
    recv_perm_msg = [recv_perm, recv_cells_per_proc, MPI.UINT32_T]
    cell_to_output_comm.Neighbor_alltoallv(send_perm_msg, recv_perm_msg)
    cell_permutation_info = np.empty_like(recv_perm)
    cell_permutation_info[local_cell_index] = recv_perm

    # 2. Extract function data (array is the same, keeping global indices from DOLFINx)
    # Dofmap is moved by the original cell index similar to the mesh geometry dofmap
    dofmap = u.function_space.dofmap
    dmap = dofmap.list
    num_dofs_per_cell = dmap.shape[1]
    dofmap_bs = dofmap.bs
    index_map_bs = dofmap.index_map_bs

    # Unroll dofmap for block size
    unrolled_dofmap = unroll_dofmap(dofmap.list[:num_owned_cells, :], dofmap_bs)
    dmap_loc = (unrolled_dofmap // index_map_bs).reshape(-1)
    dmap_rem = (unrolled_dofmap % index_map_bs).reshape(-1)

    # Convert imap index to global index
    imap_global = dofmap.index_map.local_to_global(dmap_loc)
    dofmap_global = (imap_global * index_map_bs + dmap_rem).reshape(unrolled_dofmap.shape)
    num_dofs_per_cell = dofmap_global.shape[1]
    dofmap_insert_position = unroll_insert_position(cell_insert_position, num_dofs_per_cell)

    # Create and send array for global dofmap
    send_function_dofmap = np.empty(len(dofmap_insert_position), dtype=np.int64)
    send_function_dofmap[dofmap_insert_position] = dofmap_global.reshape(-1)
    send_sizes_dofmap = send_cells_per_proc * num_dofs_per_cell
    recv_size_dofmap = recv_cells_per_proc * num_dofs_per_cell
    recv_function_dofmap = np.empty(recv_size_dofmap.sum(), dtype=np.int64)
    cell_to_output_comm.Neighbor_alltoallv(
        [send_function_dofmap, send_sizes_dofmap, MPI.INT64_T],
        [recv_function_dofmap, recv_size_dofmap, MPI.INT64_T],
    )

    shaped_dofmap = recv_function_dofmap.reshape(
        local_cell_range[1] - local_cell_range[0], num_dofs_per_cell
    ).copy()
    final_dofmap = np.empty_like(shaped_dofmap)
    final_dofmap[local_cell_index] = shaped_dofmap
    final_dofmap = final_dofmap.reshape(-1)

    # Get offsets of dofmap
    num_cells_local = local_cell_range[1] - local_cell_range[0]
    num_dofs_local_dmap = num_cells_local * num_dofs_per_cell
    dofmap_imap = dolfinx.common.IndexMap(mesh.comm, num_dofs_local_dmap)
    local_dofmap_offsets = np.arange(num_cells_local + 1, dtype=np.int64)
    local_dofmap_offsets[:] *= num_dofs_per_cell
    local_dofmap_offsets[:] += dofmap_imap.local_range[0]

    num_dofs_local = dofmap.index_map.size_local * dofmap.index_map_bs
    num_dofs_global = dofmap.index_map.size_global * dofmap.index_map_bs
    local_range = np.asarray(dofmap.index_map.local_range, dtype=np.int64) * dofmap.index_map_bs
    func_name = name if name is not None else u.name
    return FunctionData(
        cell_permutations=cell_permutation_info,
        local_cell_range=local_cell_range,
        num_cells_global=num_cells_global,
        dofmap_array=final_dofmap,
        dofmap_offsets=local_dofmap_offsets,
        values=u.x.array[:num_dofs_local].copy(),
        dof_range=local_range,
        num_dofs_global=num_dofs_global,
        dofmap_range=dofmap_imap.local_range,
        global_dofs_in_dofmap=dofmap_imap.size_global,
        name=func_name,
    )


[docs] def write_function_on_input_mesh( filename: typing.Union[Path, str], u: dolfinx.fem.Function, engine: str = "BP4", mode: adios2.Mode = adios2.Mode.Append, time: float = 0.0, name: typing.Optional[str] = None, ): """ Write function checkpoint (to be read with the input mesh). Parameters: u: The function to checkpoint filename: The filename to write to engine: The ADIOS2 engine to use mode: The ADIOS2 mode to use (write or append) time: Time-stamp associated with function at current write step name: Name of function. If None, the name of the function is used. """ mesh = u.function_space.mesh function_data = create_function_data_on_original_mesh(u, name) fname = Path(filename) write_function( fname, mesh.comm, function_data, engine, mode, time, io_name="OriginalFunctionWriter", )
[docs] def write_mesh_input_order( filename: typing.Union[Path, str], mesh: dolfinx.mesh.Mesh, engine: str = "BP4" ): """ Write mesh to checkpoint file in original input ordering """ mesh_data = create_original_mesh_data(mesh) fname = Path(filename) write_mesh(fname, mesh.comm, mesh_data, engine, io_name="OriginalMeshWriter")