Coverage for python/src/dolfinx_mpc/dictcondition.py: 98%
129 statements
« prev ^ index » next coverage.py v7.8.0, created at 2025-04-03 13:59 +0000
« prev ^ index » next coverage.py v7.8.0, created at 2025-04-03 13:59 +0000
1# Copyright (C) 2020-2021 Jørgen S. Dokken
2#
3# This file is part of DOLFINX_MPC
4#
5# SPDX-License-Identifier: MIT
6from __future__ import annotations
8import typing
10import dolfinx
11import dolfinx.fem as fem
12import numpy as np
13from dolfinx import default_scalar_type
16def close_to(
17 point: np.typing.NDArray[typing.Union[np.float64, np.float32]],
18 atol=1000 * np.finfo(dolfinx.default_real_type).resolution,
19):
20 """
21 Convenience function for locating a point [x,y,z]
22 within an array x [[x0,...,xN],[y0,...,yN], [z0,...,zN]].
24 Args:
25 point: The point should be padded to 3D
26 """
27 return lambda x: np.isclose(x, point, atol=atol).all(axis=0)
30@typing.no_type_check
31def create_dictionary_constraint(
32 V: fem.functionspace,
33 slave_master_dict: typing.Dict[bytes, typing.Dict[bytes, float]],
34 subspace_slave: typing.Optional[int] = None,
35 subspace_master: typing.Optional[int] = None,
36):
37 """
38 Returns a multi point constraint for a given function space
39 and dictionary constraint.
40 Args:
41 V: The function space
42 slave_master_dict: The dictionary
43 subspace_slave: If using mixed or vector space, and only want to use dofs from
44 a sub space as slave add index here.
45 subspace_master: Subspace index for mixed or vector spaces
47 Examples:
48 If the dof `D` located at `[d0,d1]` should be constrained to the dofs `E` and
49 F at `[e0,e1]` and `[f0,f1]` as :math:`D = \\alpha E + \\beta F`
50 the dictionary should be:
52 .. highlight:: python
53 .. code-block:: python
55 {np.array([d0, d1], dtype=mesh.geometry.x.dtype).tobytes():
56 {numpy.array([e0, e1], dtype=mesh.geometry.x.dtype).tobytes(): alpha,
57 numpy.array([f0, f1], dtype=mesh.geometry.x.dtype).tobytes(): beta}}
58 """
59 comm = V.mesh.comm
60 bs = V.dofmap.index_map_bs
61 local_size = V.dofmap.index_map.size_local * bs
62 index_map = V.dofmap.index_map
63 owned_entities = {}
64 ghosted_entities = {}
65 non_local_entities = {}
66 slaves_local = {}
67 slaves_ghost = {}
68 dfloat = V.mesh.geometry.x.dtype
69 slave_point_nd = np.zeros((3, 1), dtype=dfloat)
70 for i, slave_point in enumerate(slave_master_dict.keys()):
71 num_masters = len(list(slave_master_dict[slave_point].keys()))
72 # Status for current slave, -1 if not on proc, 0 if ghost, 1 if owned
73 slave_status = -1
74 # Wrap slave point as numpy array
75 sp = np.frombuffer(slave_point, dtype=dfloat)
76 for j, coord in enumerate(sp):
77 slave_point_nd[j] = coord
78 slave_point_nd[len(sp) :] = 0
80 if subspace_slave is None:
81 slave_dofs = fem.locate_dofs_geometrical(V, close_to(slave_point_nd))
82 else:
83 Vsub = V.sub(subspace_slave).collapse()[0]
84 slave_dofs = fem.locate_dofs_geometrical((V.sub(subspace_slave), Vsub), close_to(slave_point_nd))[0]
85 if len(slave_dofs) == 1:
86 # Decide if slave is ghost or not
87 if slave_dofs[0] < local_size:
88 slaves_local[i] = slave_dofs[0]
89 owned_entities[i] = {
90 "masters": np.full(num_masters, -1, dtype=np.int64),
91 "coeffs": np.full(num_masters, -1, dtype=dolfinx.default_scalar_type),
92 "owners": np.full(num_masters, -1, dtype=np.int32),
93 "master_count": 0,
94 "local_index": [],
95 }
96 slave_status = 1
97 else:
98 slaves_ghost[i] = slave_dofs[0]
99 ghosted_entities[i] = {
100 "masters": np.full(num_masters, -1, dtype=np.int64),
101 "coeffs": np.full(num_masters, -1, dtype=dolfinx.default_scalar_type),
102 "owners": np.full(num_masters, -1, dtype=np.int32),
103 "master_count": 0,
104 "local_index": [],
105 }
106 slave_status = 0
107 elif len(slave_dofs) > 1:
108 raise RuntimeError("Multiple slaves found at same point. " + "You should use sub-space locators.")
109 # Wrap as list to ensure order later
110 master_points = list(slave_master_dict[slave_point].keys())
111 master_points_nd = np.zeros((3, len(master_points)), dtype=dfloat)
112 for j, master_point in enumerate(master_points):
113 # Wrap bytes as numpy array
114 for k, coord in enumerate(np.frombuffer(master_point, dtype=dfloat)):
115 master_points_nd[k, j] = coord
116 if subspace_master is None:
117 master_dofs = fem.locate_dofs_geometrical(V, close_to(master_points_nd[:, j : j + 1]))
118 else:
119 Vsub = V.sub(subspace_master).collapse()[0]
120 master_dofs = fem.locate_dofs_geometrical(
121 (V.sub(subspace_master), Vsub), close_to(master_points_nd[:, j : j + 1])
122 )[0]
124 # Only add masters owned by this processor
125 master_dofs = master_dofs[master_dofs < local_size]
126 if len(master_dofs) == 1:
127 master_block = master_dofs[0] // bs
128 master_rem = master_dofs[0] % bs
129 glob_master = index_map.local_to_global(np.asarray([master_block], dtype=np.int32))[0]
130 if slave_status == -1:
131 if i in non_local_entities.keys():
132 non_local_entities[i]["masters"].append(glob_master * bs + master_rem)
133 non_local_entities[i]["coeffs"].append(slave_master_dict[slave_point][master_point])
134 (non_local_entities[i]["owners"].append(comm.rank),)
135 non_local_entities[i]["local_index"].append(j)
136 else:
137 non_local_entities[i] = {
138 "masters": [glob_master * bs + master_rem],
139 "coeffs": [slave_master_dict[slave_point][master_point]],
140 "owners": [comm.rank],
141 "local_index": [j],
142 }
143 elif slave_status == 0:
144 ghosted_entities[i]["masters"][j] = glob_master * bs + master_rem
145 ghosted_entities[i]["owners"][j] = comm.rank
146 ghosted_entities[i]["coeffs"][j] = slave_master_dict[slave_point][master_point]
147 ghosted_entities[i]["local_index"].append(j)
148 elif slave_status == 1:
149 owned_entities[i]["masters"][j] = glob_master * bs + master_rem
150 owned_entities[i]["owners"][j] = comm.rank
151 owned_entities[i]["coeffs"][j] = slave_master_dict[slave_point][master_point]
152 owned_entities[i]["local_index"].append(j)
153 else:
154 raise RuntimeError("Invalid slave status: {0:d} (-1,0,1 are valid options)".format(slave_status))
155 elif len(master_dofs) > 1:
156 raise RuntimeError("Multiple masters found at same point. You should use sub-space locators.")
158 # Send the ghost and owned entities to processor 0 to gather them
159 data_to_send = [owned_entities, ghosted_entities, non_local_entities]
160 if comm.rank != 0:
161 comm.send(data_to_send, dest=0, tag=1)
162 del owned_entities, ghosted_entities, non_local_entities
163 # Gather all info on proc 0 and sort data
164 owned_slaves, ghosted_slaves = None, None
165 if comm.rank == 0:
166 recv = {0: data_to_send}
167 for proc in range(1, comm.size):
168 recv[proc] = comm.recv(source=proc, tag=1)
170 for proc in range(comm.size):
171 # Loop through all masters
172 other_procs = np.arange(comm.size)
173 other_procs = other_procs[other_procs != proc]
174 # Loop through all owned slaves and ghosts, and update
175 # the master entries
176 for pair in [[0, 1], [1, 0]]:
177 i, j = pair
178 for slave in recv[proc][i].keys():
179 for o_proc in other_procs:
180 # If slave is ghost on other proc add local masters
181 if slave in recv[o_proc][j].keys():
182 # Update master with possible entries from ghost
183 o_masters = recv[o_proc][j][slave]["local_index"]
184 for o_master in o_masters:
185 recv[proc][i][slave]["masters"][o_master] = recv[o_proc][j][slave]["masters"][o_master]
186 recv[proc][i][slave]["coeffs"][o_master] = recv[o_proc][j][slave]["coeffs"][o_master]
187 recv[proc][i][slave]["owners"][o_master] = recv[o_proc][j][slave]["owners"][o_master]
188 # If proc only has master, but not the slave
189 if slave in recv[o_proc][2].keys():
190 o_masters = recv[o_proc][2][slave]["local_index"]
191 # As non owned indices only store non-zero entries
192 for k, o_master in enumerate(o_masters):
193 recv[proc][i][slave]["masters"][o_master] = recv[o_proc][2][slave]["masters"][k]
194 recv[proc][i][slave]["coeffs"][o_master] = recv[o_proc][2][slave]["coeffs"][k]
195 recv[proc][i][slave]["owners"][o_master] = recv[o_proc][2][slave]["owners"][k]
196 if proc == comm.rank:
197 owned_slaves = recv[proc][0]
198 ghosted_slaves = recv[proc][1]
199 else:
200 # If no owned masters, do not send masters
201 if len(recv[proc][0].keys()) > 0:
202 comm.send(recv[proc][0], dest=proc, tag=55)
203 if len(recv[proc][1].keys()) > 0:
204 comm.send(recv[proc][1], dest=proc, tag=66)
205 else:
206 if len(slaves_local.keys()) > 0:
207 owned_slaves = comm.recv(source=0, tag=55)
208 if len(slaves_ghost.keys()) > 0:
209 ghosted_slaves = comm.recv(source=0, tag=66)
211 # Flatten slaves (local)
212 slaves, masters, coeffs, owners, offsets = [], [], [], [], [0]
213 for slave_index in slaves_local.keys():
214 slaves.append(slaves_local[slave_index])
215 masters.extend(owned_slaves[slave_index]["masters"]) # type: ignore
216 owners.extend(owned_slaves[slave_index]["owners"]) # type: ignore
217 coeffs.extend(owned_slaves[slave_index]["coeffs"]) # type: ignore
218 offsets.append(len(masters))
220 for slave_index in slaves_ghost.keys():
221 slaves.append(slaves_ghost[slave_index])
222 masters.extend(ghosted_slaves[slave_index]["masters"]) # type: ignore
223 owners.extend(ghosted_slaves[slave_index]["owners"]) # type: ignore
224 coeffs.extend(ghosted_slaves[slave_index]["coeffs"]) # type: ignore
225 offsets.append(len(masters))
226 return (
227 np.asarray(slaves, dtype=np.int32),
228 np.asarray(masters, dtype=np.int64),
229 np.asarray(coeffs, dtype=default_scalar_type),
230 np.asarray(owners, dtype=np.int32),
231 np.asarray(offsets, dtype=np.int32),
232 )