Stokes flow with slip conditions#

Author Jørgen S. Dokken

License MIT

This demo illustrates how to apply a slip condition on an interface not aligned with the coordiante axis.

Mathematical formulation#

We start with the general, mathematical formulation of this problem, similar to the formulation presented in [Kno00].

Find the fluid velocity and pressure, \((\mathbf{u}, p)\in V(\Omega) \times Q(\Omega)\) such that

\[\begin{split} \begin{align*} -\nabla \cdot \sigma(\mathbf{u}, p, \mu) &= \mathbf{f}&&\text{in }\Omega,\\ \nabla \cdot \mathbf{u} &= 0 &&\text{in }\Omega,\\ \mathbf{u} &= \mathbf{u}_{in}&&\text{on }\partial\Omega_D,\\ \mathbf{u}\cdot\mathbf{n}&= \mathbf{0}&&\text{on } \partial\Omega_S,\\ (\mathbb{I}-\mathbf{n}\otimes\mathbf{n})2\mu\epsilon(\mathbf{u}) &= \mathbf{g}_\tau&&\text{on }\partial\Omega_S,\\ \sigma \cdot \mathbf{n} &= \mathbf{0}&&\text{on } \partial \Omega_N, \end{align*} \end{split}\]

where

\[\begin{split} \begin{align*} \sigma(\mathbf{u}, p, \mu)&=2\mu \epsilon(\mathbf{u}) - p\mathbb{I}\\ \epsilon(\mathbf{u}) &= \frac{1}{2}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T\right) \end{align*} \end{split}\]

is the stress-tensor for incompressible fluid. We have denoted the inlet boundary as \(\partial\Omega_D\), the slip boundary as \(\partial\Omega_S\) and the outlet as \(\partial\Omega_N\).

We start by the various modules required for this demo

from __future__ import annotations

from pathlib import Path
from typing import Union

from mpi4py import MPI

import basix.ufl
import gmsh
import numpy as np
from dolfinx import common, default_real_type, default_scalar_type, fem, io
from dolfinx.io import gmsh as gmshio
from numpy.typing import NDArray
from ufl import (
    FacetNormal,
    Identity,
    Measure,
    MixedFunctionSpace,
    TestFunctions,
    TrialFunctions,
    div,
    dot,
    dx,
    extract_blocks,
    grad,
    inner,
    outer,
    sym,
)
from ufl.core.expr import Expr

import dolfinx_mpc.utils
from dolfinx_mpc import LinearProblem, MultiPointConstraint

Mesh generation#

Next we create the computational domain, a channel titled with respect to the coordinate axis. We use GMSH and the DOLFINx GMSH-IO to convert the GMSH model into a DOLFINx mesh

We mark the walls (\(\partial\Omega_S\)) where we want to impose slip conditions with 1, the outlet (\(\partial\Omega_N\)) with 2 and the inlet (\(\partial\Omega_D\)) with 3.

def create_mesh_gmsh(
    L: int = 2,
    H: int = 1,
    res: float = 0.1,
    theta: float = np.pi / 5,
    wall_marker: int = 1,
    outlet_marker: int = 2,
    inlet_marker: int = 3,
):
    """
    Create a channel of length L, height H, rotated theta degrees
    around origin, with facet markers for inlet, outlet and walls.


    Parameters
    ----------
    L
        The length of the channel
    H
        Width of the channel
    res
        Mesh resolution (uniform)
    theta
        Rotation angle
    wall_marker
        Integer used to mark the walls of the channel
    outlet_marker
        Integer used to mark the outlet of the channel
    inlet_marker
        Integer used to mark the inlet of the channel
    """
    gmsh.initialize()
    if MPI.COMM_WORLD.rank == 0:
        gmsh.model.add("Square duct")

        # Create rectangular channel
        channel = gmsh.model.occ.addRectangle(0, 0, 0, L, H)
        gmsh.model.occ.synchronize()

        # Find entity markers before rotation
        surfaces = gmsh.model.occ.getEntities(dim=1)
        walls = []
        inlets = []
        outlets = []
        for surface in surfaces:
            com = gmsh.model.occ.getCenterOfMass(surface[0], surface[1])
            if np.allclose(com, [0, H / 2, 0]):
                inlets.append(surface[1])
            elif np.allclose(com, [L, H / 2, 0]):
                outlets.append(surface[1])
            elif np.isclose(com[1], 0) or np.isclose(com[1], H):
                walls.append(surface[1])
        # Rotate channel theta degrees in the xy-plane
        gmsh.model.occ.rotate([(2, channel)], 0, 0, 0, 0, 0, 1, theta)
        gmsh.model.occ.synchronize()

        # Add physical markers
        gmsh.model.addPhysicalGroup(2, [channel], 1)
        gmsh.model.setPhysicalName(2, 1, "Fluid volume")
        gmsh.model.addPhysicalGroup(1, walls, wall_marker)
        gmsh.model.setPhysicalName(1, wall_marker, "Walls")
        gmsh.model.addPhysicalGroup(1, inlets, inlet_marker)
        gmsh.model.setPhysicalName(1, inlet_marker, "Fluid inlet")
        gmsh.model.addPhysicalGroup(1, outlets, outlet_marker)
        gmsh.model.setPhysicalName(1, outlet_marker, "Fluid outlet")

        # Set uniform mesh size
        gmsh.option.setNumber("Mesh.CharacteristicLengthMin", res)
        gmsh.option.setNumber("Mesh.CharacteristicLengthMax", res)

        # Generate mesh
        gmsh.model.mesh.generate(2)
    # Convert gmsh model to DOLFINx Mesh and meshtags
    mesh_data = gmshio.model_to_mesh(gmsh.model, MPI.COMM_WORLD, 0, gdim=2)
    gmsh.finalize()
    assert mesh_data.facet_tags is not None
    return mesh_data.mesh, mesh_data.facet_tags


wall_marker = 1
outlet_marker = 2
inlet_marker = 3
mesh, mt = create_mesh_gmsh(res=0.1, wall_marker=wall_marker, outlet_marker=outlet_marker, inlet_marker=inlet_marker)
Info    : Meshing 1D...
Info    : [  0%] Meshing curve 1 (Line)
Info    : [ 30%] Meshing curve 2 (Line)
Info    : [ 60%] Meshing curve 3 (Line)
Info    : [ 80%] Meshing curve 4 (Line)
Info    : Done meshing 1D (Wall 0.000541505s, CPU 0.001022s)
Info    : Meshing 2D...
Info    : Meshing surface 1 (Plane, Frontal-Delaunay)
Info    : Done meshing 2D (Wall 0.0111352s, CPU 0.011182s)
Info    : 275 nodes 552 elements

Creation of the mixed function space#

The next step is the create the function spaces for the fluid velocit and pressure. We will use a mixed-formulation, and we use basix.ufl to create the Taylor-Hood finite element pair

P2 = basix.ufl.element("Lagrange", mesh.topology.cell_name(), 2, shape=(mesh.geometry.dim,), dtype=default_real_type)
P1 = basix.ufl.element("Lagrange", mesh.topology.cell_name(), 1, dtype=default_real_type)

We use the class ufl.MixedFunctionSpace to create the mixed space, as opposed to using basix.ufl.mixed_element() as it makes it easier to specify multi-point constraints for the velocity space.

V = fem.functionspace(mesh, P2)
Q = fem.functionspace(mesh, P1)
W = MixedFunctionSpace(V, Q)

Boundary conditions#

Next we want to prescribe an inflow condition on a set of facets, those marked by 3 in GMSH To do so, we start by creating a function in the collapsed subspace of V, and create the expression of choice for the boundary condition. We use a Python-function for this, that takes in an array of shape (num_points, 3) and returns the function values as an (num_points, 2) array. Note that we therefore can use vectorized Numpy operations to compute the inlet values for a sequence of points with a single function call

def inlet_velocity_expression(
    x: NDArray[Union[np.float32, np.float64]],
) -> NDArray[Union[np.float32, np.float64, np.complex64, np.complex128]]:
    return np.stack(
        (
            np.sin(np.pi * np.sqrt(x[0] ** 2 + x[1] ** 2)),
            5 * x[1] * np.sin(np.pi * np.sqrt(x[0] ** 2 + x[1] ** 2)),
        )
    ).astype(default_scalar_type)
inlet_velocity.interpolate(inlet_velocity_expression)
inlet_velocity.x.scatter_forward()

Next, we have to create the Dirichlet boundary condition. As the function is in the collapsed space, we send in the function space V of the velocity

dofs = fem.locate_dofs_topological(V, 1, mt.find(inlet_marker))
bc1 = fem.dirichletbc(inlet_velocity, dofs)
bcs = [bc1]

Next, we want to create the slip conditions at the side walls of the channel. To do so, we compute an approximation of the normal at all the degrees of freedom that are associated with the facets marked with wall_marker, either by being on one of the vertices of a facet marked with wall_marker, or on the facet itself (for instance at a midpoint). If a dof is associated with a vertex that is connected to mutliple facets marked with 1, we define the normal as the average between the normals at the vertex viewed from each facet. We use create_normal_approixmation to approximate the facet at each degree of freedom by the average at the neighbouring facets.

Next, we can create the multipoint-constraint, enforcing that \(\mathbf{u}\cdot\mathbf{n}=0\), except where we have already enforced a Dirichlet boundary condition. We start by initializing the class dolfinx_mpc.MultiPointConstraint, then we call create_slip_constraint. This method takes in the function space, the dolfinx.mesh.MeshTags object with the facets, the markers of the facets to constrain, the normal vector and the boundary conditions. Once we have added all constraints to the mpc_u object, we call finalize, which sets up a constrained function space with a smaller set of degrees of freedom.

with common.Timer("~Stokes: Create slip constraint"):
    mpc_u = MultiPointConstraint(V)
    mpc_u.create_slip_constraint(V, (mt, wall_marker), n, bcs=bcs)
mpc_u.finalize()

As we will not have an multipoint constraint for the pressure, we create an empty constraint.

mpc_p = MultiPointConstraint(Q)
mpc_p.finalize()

Variational formulation#

We start by creating some convenience functions, including the tangential projection of a vector, the symmetric gradient and traction.

def tangential_proj(u: Expr, n: Expr):
    """
    See for instance [Knobloch, 2000](https://doi.org/10.1023/A:1022235512626).
    """
    return (Identity(u.ufl_shape[0]) - outer(n, n)) * u


def epsilon(u: Expr):
    return sym(grad(u))


def sigma(u: Expr, p: Expr, mu: Expr):
    return 2 * mu * epsilon(u) - p * Identity(u.ufl_shape[0])

Next, we define the classical terms of the bilinear form a and linear form L. We note that we use the symmetric formulation after integration by parts.

mu = fem.Constant(mesh, default_scalar_type(1.0))
f = fem.Constant(mesh, default_scalar_type((0, 0)))
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)
a = (2 * mu * inner(epsilon(u), epsilon(v)) - inner(p, div(v)) - inner(div(u), q)) * dx
L = inner(f, v) * dx + inner(fem.Constant(mesh, default_scalar_type(0.0)), q) * dx

We could prescibe some shear stress at the slip boundaries. However, in this demo, we set it to 0, but include it in the variational formulation. We add the appropriate terms due to the slip condition, as explained in [SW20].

n = FacetNormal(mesh)
g_tau = tangential_proj(fem.Constant(mesh, default_scalar_type(((0, 0), (0, 0)))) * n, n)
ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=wall_marker)

a -= inner(outer(n, n) * dot(sigma(u, p, mu), n), v) * ds
L += inner(g_tau, v) * ds

Solve the variational problem#

We use the MUMPS solver provided through the dolfinx_mpc.LinearProblem interface to solve the variational problem.

Usage of extract blocks

As we have used ufl.MixedFunctionSpace to create the monolitic variational formulation, we split it into the appropriate blocks prior to passing them into LinearProblem using ufl.extract_blocks()

We pass in the two multi-point constraints in the order the spaces are placed in W.

tol = np.finfo(mesh.geometry.x.dtype).eps * 1000
petsc_options = {
    "ksp_type": "preonly",
    "pc_type": "lu",
    "pc_factor_mat_solver_type": "mumps",
    "ksp_error_if_not_converged": True,
    "ksp_monitor": None,
}
problem = LinearProblem(extract_blocks(a), extract_blocks(L), [mpc_u, mpc_p], bcs=bcs, petsc_options=petsc_options)
uh, ph = problem.solve()
  Residual norms for dolfinx_mpc_linear_problem_ solve.
  0 KSP Residual norm 2.252376419249e+01
  1 KSP Residual norm 3.096731804592e-13

Visualization#

We store the solution to the VTX file format, which can be opend with the ADIOS2VTXReader in Paraview

uh.name = "u"
ph.name = "p"

outdir = Path("results").absolute()
outdir.mkdir(exist_ok=True, parents=True)

with io.VTXWriter(mesh.comm, outdir / "demo_stokes_u.bp", uh, engine="BP4") as vtx:
    vtx.write(0.0)
with io.VTXWriter(mesh.comm, outdir / "demo_stokes_p.bp", ph, engine="BP4") as vtx:
    vtx.write(0.0)
[Kno00]

Petr Knobloch. A finite element convergence analysis for 3d stokes equations in case of variational crimes. Applications of Mathematics, 45(2):99–129, Apr 2000. doi:10.1023/A:1022235512626.

[SW20]

Nathan Sime and Cian R. Wilson. Automatic weak imposition of free slip boundary conditions via nitsche's method: application to nonlinear problems in geodynamics. 2020. arXiv:2001.10639, doi:10.48550/arXiv.2001.10639.