Source code for dolfinx_mpc.multipointconstraint

# Copyright (C) 2020-2023 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from typing import Callable, Dict, List, Optional, Tuple, Union

from petsc4py import PETSc as _PETSc

import dolfinx.cpp as _cpp
import dolfinx.fem as _fem
import dolfinx.mesh as _mesh
import numpy
import numpy.typing as npt
from dolfinx import default_scalar_type

import dolfinx_mpc.cpp

from .dictcondition import create_dictionary_constraint

_mpc_classes = Union[
    dolfinx_mpc.cpp.mpc.MultiPointConstraint_double,
    dolfinx_mpc.cpp.mpc.MultiPointConstraint_float,
    dolfinx_mpc.cpp.mpc.MultiPointConstraint_complex_double,
    dolfinx_mpc.cpp.mpc.MultiPointConstraint_complex_float,
]
_float_classes = Union[numpy.float32, numpy.float64, numpy.complex128, numpy.complex64]
_float_array_types = Union[
    npt.NDArray[numpy.float32],
    npt.NDArray[numpy.float64],
    npt.NDArray[numpy.complex64],
    npt.NDArray[numpy.complex128],
]
_mpc_data_classes = Union[
    dolfinx_mpc.cpp.mpc.mpc_data_double,
    dolfinx_mpc.cpp.mpc.mpc_data_float,
    dolfinx_mpc.cpp.mpc.mpc_data_complex_double,
    dolfinx_mpc.cpp.mpc.mpc_data_complex_float,
]


class MPCData:
    _cpp_object: _mpc_data_classes

    def __init__(
        self,
        slaves: npt.NDArray[numpy.int32],
        masters: npt.NDArray[numpy.int64],
        coeffs: _float_array_types,
        owners: npt.NDArray[numpy.int32],
        offsets: npt.NDArray[numpy.int32],
    ):
        if coeffs.dtype.type == numpy.float32:
            self._cpp_object = dolfinx_mpc.cpp.mpc.mpc_data_float(slaves, masters, coeffs, owners, offsets)
        elif coeffs.dtype.type == numpy.float64:
            self._cpp_object = dolfinx_mpc.cpp.mpc.mpc_data_double(slaves, masters, coeffs, owners, offsets)
        elif coeffs.dtype.type == numpy.complex64:
            self._cpp_object = dolfinx_mpc.cpp.mpc.mpc_data_complex_float(slaves, masters, coeffs, owners, offsets)
        elif coeffs.dtype.type == numpy.complex128:
            self._cpp_object = dolfinx_mpc.cpp.mpc.mpc_data_complex_double(slaves, masters, coeffs, owners, offsets)
        else:
            raise ValueError("Unsupported dtype {coeffs.dtype.type} for coefficients")

    @property
    def slaves(self):
        return self._cpp_object.slaves

    @property
    def masters(self):
        return self._cpp_object.masters

    @property
    def coeffs(self):
        return self._cpp_object.coeffs

    @property
    def owners(self):
        return self._cpp_object.owners

    @property
    def offsets(self):
        return self._cpp_object.offsets


[docs] class MultiPointConstraint: """ Hold data for multi point constraint relation ships, including new index maps for local assembly of matrices and vectors. Args: V: The function space dtype: The dtype of the underlying functions """ _slaves: npt.NDArray[numpy.int32] _masters: npt.NDArray[numpy.int64] _coeffs: _float_array_types _owners: npt.NDArray[numpy.int32] _offsets: npt.NDArray[numpy.int32] V: _fem.FunctionSpace finalized: bool _cpp_object: _mpc_classes _dtype: numpy.floating __slots__ = tuple(__annotations__) def __init__(self, V: _fem.FunctionSpace, dtype: numpy.floating = default_scalar_type): self._slaves = numpy.array([], dtype=numpy.int32) self._masters = numpy.array([], dtype=numpy.int64) self._coeffs = numpy.array([], dtype=dtype) # type: ignore self._owners = numpy.array([], dtype=numpy.int32) self._offsets = numpy.array([0], dtype=numpy.int32) self.V = V self.finalized = False self._dtype = dtype
[docs] def add_constraint( self, V: _fem.FunctionSpace, slaves: npt.NDArray[numpy.int32], masters: npt.NDArray[numpy.int64], coeffs: _float_array_types, owners: npt.NDArray[numpy.int32], offsets: npt.NDArray[numpy.int32], ): """ Add new constraint given by numpy arrays. Args: V: The function space for the constraint slaves: List of all slave dofs (using local dof numbering) on this process masters: List of all master dofs (using global dof numbering) on this process coeffs: The coefficients corresponding to each master. owners: The process each master is owned by. offsets: Array indicating the location in the masters array for the i-th slave in the slaves arrays, i.e. .. highlight:: python .. code-block:: python masters_of_owned_slave[i] = masters[offsets[i]:offsets[i+1]] """ assert V == self.V self._already_finalized() if len(slaves) > 0: self._offsets = numpy.append(self._offsets, offsets[1:] + len(self._masters)) self._slaves = numpy.append(self._slaves, slaves) self._masters = numpy.append(self._masters, masters) self._coeffs = numpy.append(self._coeffs, coeffs) self._owners = numpy.append(self._owners, owners)
[docs] def add_constraint_from_mpc_data(self, V: _fem.FunctionSpace, mpc_data: Union[_mpc_data_classes, MPCData]): """ Add new constraint given by an `dolfinc_mpc.cpp.mpc.mpc_data`-object """ self._already_finalized() self.add_constraint( V, mpc_data.slaves, mpc_data.masters, mpc_data.coeffs, mpc_data.owners, mpc_data.offsets, )
[docs] def finalize(self) -> None: """ Finializes the multi point constraint. After this function is called, no new constraints can be added to the constraint. This function creates a map from the cells (local to index) to the slave degrees of freedom and builds a new index map and function space where unghosted master dofs are added as ghosts. """ self._already_finalized() self._coeffs.astype(numpy.dtype(self._dtype)) # Initialize C++ object and create slave->cell maps if self._dtype == numpy.float32: self._cpp_object = dolfinx_mpc.cpp.mpc.MultiPointConstraint_float( self.V._cpp_object, self._slaves, self._masters, self._coeffs.astype(self._dtype), self._owners, self._offsets, ) elif self._dtype == numpy.float64: self._cpp_object = dolfinx_mpc.cpp.mpc.MultiPointConstraint_double( self.V._cpp_object, self._slaves, self._masters, self._coeffs.astype(self._dtype), self._owners, self._offsets, ) elif self._dtype == numpy.complex64: self._cpp_object = dolfinx_mpc.cpp.mpc.MultiPointConstraint_complex_float( self.V._cpp_object, self._slaves, self._masters, self._coeffs.astype(self._dtype), self._owners, self._offsets, ) elif self._dtype == numpy.complex128: self._cpp_object = dolfinx_mpc.cpp.mpc.MultiPointConstraint_complex_double( self.V._cpp_object, self._slaves, self._masters, self._coeffs.astype(self._dtype), self._owners, self._offsets, ) else: raise ValueError("Unsupported dtype {coeffs.dtype.type} for coefficients") # Replace function space self.V = _fem.FunctionSpace(self.V.mesh, self.V.ufl_element(), self._cpp_object.function_space) self.finalized = True # Delete variables that are no longer required del (self._slaves, self._masters, self._coeffs, self._owners, self._offsets)
[docs] def create_periodic_constraint_topological( self, V: _fem.FunctionSpace, meshtag: _mesh.MeshTags, tag: int, relation: Callable[[numpy.ndarray], numpy.ndarray], bcs: List[_fem.DirichletBC], scale: _float_classes = default_scalar_type(1.0), ): """ Create periodic condition for all closure dofs of on all entities in `meshtag` with value `tag`. :math:`u(x_i) = scale * u(relation(x_i))` for all of :math:`x_i` on marked entities. Args: V: The function space to assign the condition to. Should either be the space of the MPC or a sub space. meshtag: MeshTag for entity to apply the periodic condition on tag: Tag indicating which entities should be slaves relation: Lambda-function describing the geometrical relation bcs: Dirichlet boundary conditions for the problem (Periodic constraints will be ignored for these dofs) scale: Float for scaling bc """ bcs_ = [bc._cpp_object for bc in bcs] if isinstance(scale, numpy.generic): # nanobind conversion of numpy dtypes to general Python types scale = scale.item() # type: ignore if V is self.V: mpc_data = dolfinx_mpc.cpp.mpc.create_periodic_constraint_topological( self.V._cpp_object, meshtag._cpp_object, tag, relation, bcs_, scale, False ) elif self.V.contains(V): mpc_data = dolfinx_mpc.cpp.mpc.create_periodic_constraint_topological( V._cpp_object, meshtag._cpp_object, tag, relation, bcs_, scale, True ) else: raise RuntimeError("The input space has to be a sub space (or the full space) of the MPC") self.add_constraint_from_mpc_data(self.V, mpc_data=mpc_data)
[docs] def create_periodic_constraint_geometrical( self, V: _fem.FunctionSpace, indicator: Callable[[numpy.ndarray], numpy.ndarray], relation: Callable[[numpy.ndarray], numpy.ndarray], bcs: List[_fem.DirichletBC], scale: _float_classes = default_scalar_type(1.0), ): """ Create a periodic condition for all degrees of freedom whose physical location satisfies :math:`indicator(x_i)==True`, i.e. :math:`u(x_i) = scale * u(relation(x_i))` for all :math:`x_i` Args: V: The function space to assign the condition to. Should either be the space of the MPC or a sub space. indicator: Lambda-function to locate degrees of freedom that should be slaves relation: Lambda-function describing the geometrical relation to master dofs bcs: Dirichlet boundary conditions for the problem (Periodic constraints will be ignored for these dofs) scale: Float for scaling bc """ if isinstance(scale, numpy.generic): # nanobind conversion of numpy dtypes to general Python types scale = scale.item() # type: ignore bcs = [] if bcs is None else [bc._cpp_object for bc in bcs] if V is self.V: mpc_data = dolfinx_mpc.cpp.mpc.create_periodic_constraint_geometrical( self.V._cpp_object, indicator, relation, bcs, scale, False ) elif self.V.contains(V): mpc_data = dolfinx_mpc.cpp.mpc.create_periodic_constraint_geometrical( V._cpp_object, indicator, relation, bcs, scale, True ) else: raise RuntimeError("The input space has to be a sub space (or the full space) of the MPC") self.add_constraint_from_mpc_data(self.V, mpc_data=mpc_data)
[docs] def create_slip_constraint( self, space: _fem.FunctionSpace, facet_marker: Tuple[_mesh.MeshTags, int], v: _fem.Function, bcs: List[_fem.DirichletBC] = [], ): """ Create a slip constraint :math:`u \\cdot v=0` over the entities defined in `facet_marker` with the given index. Args: space: Function space (possible sub space) for the current constraint facet_marker: Tuple containomg the mesh tag and marker used to locate degrees of freedom v: Function containing the directional vector to dot your slip condition (most commonly a normal vector) bcs: List of Dirichlet BCs (slip conditions will be ignored on these dofs) Examples: Create constaint :math:`u\\cdot n=0` of all indices in `mt` marked with `i` .. highlight:: python .. code-block:: python V = dolfinx.fem.functionspace(mesh, ("CG", 1)) mpc = MultiPointConstraint(V) n = dolfinx.fem.Function(V) mpc.create_slip_constaint(V, (mt, i), n) Create slip constaint for a mixed function space: .. highlight:: python .. code-block:: python cellname = mesh.ufl_cell().cellname() Ve = basix.ufl.element(basix.ElementFamily.P, cellname , 2, shape=(mesh.geometry.dim,)) Qe = basix.ufl.element(basix.ElementFamily.P, cellname , 1) me = basix.ufl.mixed_element([Ve, Qe]) W = dolfinx.fem.functionspace(mesh, me) mpc = MultiPointConstraint(W) n_space, _ = W.sub(0).collapse() normal = dolfinx.fem.Function(n_space) mpc.create_slip_constraint(W.sub(0), (mt, i), normal, bcs=[]) A slip condition cannot be applied on the same degrees of freedom as a Dirichlet BC, and therefore any Dirichlet bc for the space of the multi point constraint should be supplied. .. highlight:: python .. code-block:: python cellname = mesh.ufl_cell().cellname() Ve = basix.ufl.element(basix.ElementFamily.P, cellname , 2, shape=(mesh.geometry.dim,)) Qe = basix.ufl.element(basix.ElementFamily.P, cellname , 1) me = basix.ufl.mixed_element([Ve, Qe]) W = dolfinx.fem.functionspace(mesh, me) mpc = MultiPointConstraint(W) n_space, _ = W.sub(0).collapse() normal = Function(n_space) bc = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W.sub(0)) mpc.create_slip_constraint(W.sub(0), (mt, i), normal, bcs=[bc]) """ bcs = [] if bcs is None else [bc._cpp_object for bc in bcs] if space is self.V: sub_space = False elif self.V.contains(space): sub_space = True else: raise ValueError("Input space has to be a sub space of the MPC space") mpc_data = dolfinx_mpc.cpp.mpc.create_slip_condition( space._cpp_object, facet_marker[0]._cpp_object, facet_marker[1], v._cpp_object, bcs, sub_space, ) self.add_constraint_from_mpc_data(self.V, mpc_data=mpc_data)
[docs] def create_general_constraint( self, slave_master_dict: Dict[bytes, Dict[bytes, float]], subspace_slave: Optional[int] = None, subspace_master: Optional[int] = None, ): """ Args: V: The function space slave_master_dict: Nested dictionary, where the first key is the bit representing the slave dof's coordinate in the mesh. The item of this key is a dictionary, where each key of this dictionary is the bit representation of the master dof's coordinate, and the item the coefficient for the MPC equation. subspace_slave: If using mixed or vector space, and only want to use dofs from a sub space as slave add index here subspace_master: Subspace index for mixed or vector spaces Example: If the dof `D` located at `[d0, d1]` should be constrained to the dofs `E` and `F` at `[e0, e1]` and `[f0, f1]` as :math:`D = \\alpha E + \\beta F` the dictionary should be: .. highlight:: python .. code-block:: python {numpy.array([d0, d1], dtype=mesh.geometry.x.dtype).tobytes(): {numpy.array([e0, e1], dtype=mesh.geometry.x.dtype).tobytes(): alpha, numpy.array([f0, f1], dtype=mesh.geometry.x.dtype).tobytes(): beta}} """ slaves, masters, coeffs, owners, offsets = create_dictionary_constraint( self.V, slave_master_dict, subspace_slave, subspace_master ) self.add_constraint(self.V, slaves, masters, coeffs, owners, offsets)
[docs] def create_contact_slip_condition( self, meshtags: _mesh.MeshTags, slave_marker: int, master_marker: int, normal: _fem.Function, eps2: float = 1e-20, ): """ Create a slip condition between two sets of facets marker with individual markers. The interfaces should be within machine precision of eachother, but the vertices does not need to align. The condition created is :math:`u_s \\cdot normal_s = u_m \\cdot normal_m` where `s` is the restriction to the slave facets, `m` to the master facets. Args: meshtags: The meshtags of the set of facets to tie together slave_marker: The marker of the slave facets master_marker: The marker of the master facets normal: The function used in the dot-product of the constraint eps2: The tolerance for the squared distance between cells to be considered as a collision """ if isinstance(eps2, numpy.generic): # nanobind conversion of numpy dtypes to general Python types eps2 = eps2.item() # type: ignore mpc_data = dolfinx_mpc.cpp.mpc.create_contact_slip_condition( self.V._cpp_object, meshtags._cpp_object, slave_marker, master_marker, normal._cpp_object, eps2, ) self.add_constraint_from_mpc_data(self.V, mpc_data)
[docs] def create_contact_inelastic_condition( self, meshtags: _cpp.mesh.MeshTags_int32, slave_marker: int, master_marker: int, eps2: float = 1e-20, ): """ Create a contact inelastic condition between two sets of facets marker with individual markers. The interfaces should be within machine precision of eachother, but the vertices does not need to align. The condition created is :math:`u_s = u_m` where `s` is the restriction to the slave facets, `m` to the master facets. Args: meshtags: The meshtags of the set of facets to tie together slave_marker: The marker of the slave facets master_marker: The marker of the master facets eps2: The tolerance for the squared distance between cells to be considered as a collision """ if isinstance(eps2, numpy.generic): # nanobind conversion of numpy dtypes to general Python types eps2 = eps2.item() # type: ignore mpc_data = dolfinx_mpc.cpp.mpc.create_contact_inelastic_condition( self.V._cpp_object, meshtags._cpp_object, slave_marker, master_marker, eps2 ) self.add_constraint_from_mpc_data(self.V, mpc_data)
@property def is_slave(self) -> numpy.ndarray: """ Returns a vector of integers where the ith entry indicates if a degree of freedom (local to process) is a slave. """ self._not_finalized() return self._cpp_object.is_slave @property def slaves(self): """ Returns the degrees of freedom for all slaves local to process """ self._not_finalized() return self._cpp_object.slaves @property def masters(self) -> _cpp.graph.AdjacencyList_int32: """ Returns an adjacency-list whose ith node corresponds to a degree of freedom (local to process), and links the corresponding master dofs (local to process). Examples: .. highlight:: python .. code-block:: python masters = mpc.masters masters_of_dof_i = masters.links(i) """ self._not_finalized() return self._cpp_object.masters
[docs] def coefficients(self) -> _float_array_types: """ Returns a vector containing the coefficients for the constraint, and the corresponding offsets for the ith degree of freedom. Examples: .. highlight:: python .. code-block:: python coeffs, offsets = mpc.coefficients() coeffs_of_slave_i = coeffs[offsets[i]:offsets[i+1]] """ self._not_finalized() return self._cpp_object.coefficients()
@property def num_local_slaves(self): """ Return the number of slaves owned by the current process. """ self._not_finalized() return self._cpp_object.num_local_slaves @property def cell_to_slaves(self): """ Returns an `dolfinx.cpp.graph.AdjacencyList_int32` whose ith node corresponds to the ith cell (local to process), and links the corresponding slave degrees of freedom in the cell (local to process). Examples: .. highlight:: python .. code-block:: python cell_to_slaves = mpc.cell_to_slaves() slaves_in_cell_i = cell_to_slaves.links(i) """ self._not_finalized() return self._cpp_object.cell_to_slaves @property def function_space(self): """ Return the function space for the multi-point constraint with the updated index map """ self._not_finalized() return self.V
[docs] def backsubstitution(self, u: Union[_fem.Function, _PETSc.Vec]) -> None: # type: ignore """ For a Function, impose the multi-point constraint by backsubstiution. This function is used after solving the reduced problem to obtain the values at the slave degrees of freedom .. note:: It is the users responsibility to destroy the PETSc vector Args: u: The input function """ try: self._cpp_object.backsubstitution(u.x.array) u.x.scatter_forward() except AttributeError: with u.localForm() as vector_local: self._cpp_object.backsubstitution(vector_local.array_w) u.ghostUpdate(addv=_PETSc.InsertMode.INSERT, mode=_PETSc.ScatterMode.FORWARD) # type: ignore
[docs] def homogenize(self, u: _fem.Function) -> None: """ For a vector, homogenize (set to zero) the vector components at the multi-point constraint slave DoF indices. This is particularly useful for nonlinear problems. Args: u: The input vector """ self._cpp_object.homogenize(u.x.array) u.x.scatter_forward()
def _already_finalized(self): """ Check if we have already finalized the multi point constraint """ if self.finalized: raise RuntimeError("MultiPointConstraint has already been finalized") def _not_finalized(self): """ Check if we have finalized the multi point constraint """ if not self.finalized: raise RuntimeError("MultiPointConstraint has not been finalized")