Advanced finite elements#

There is a wide range of finite elements that are supported by ufl and basix. See for instance: Supported elements in basix/ufl.

Domain mapping#

The general idea of the finite element method is to sub-divide \(\Omega\) into smaller (polygonal) elements \(K_j\) such that

  1. The triangulation covers \(\Omega\): \(\cup_{j=1}^{M}K_j=\bar{\Omega}\)

  2. No overlapping polyons: \(\mathrm{int} K_i \cap \mathrm{int} K_j=\emptyset\) for \(i\neq j\).

  3. No vertex lies in the interior of a facet or edge of another element

We will call our polygonal domain \(\mathcal{K}=\{K_j\}_{j=1}^{M}\). Next, we define a reference element \(K_{ref}\), which is a simple polygon that we can map to any element \(K_j\), using the mapping \(F_j:K_{ref}\mapsto K_j\).

We define the Jacobian of this mapping as \(\mathbf{J_j}\).

Example: Straight edged triangle#

As we saw in the section on finite elements, we can use basix to get a sample of points within the reference element.

import numpy as np

import basix.ufl

reference_points = basix.create_lattice(
    basix.CellType.triangle, 8, basix.LatticeType.gll, exterior=False, method=basix.LatticeSimplexMethod.warp
)

Next, we realize that we can use the first order Lagrange space, to represent the mapping from the reference element to any physical element: Given three points, \(\mathbf{p}_0=(x_0, y_0)^T, \mathbf{p}_1=(x_1,y_1)^T, \mathbf{p}_2=(x_2,y_2)^T\), we can represent any point \(x\) as the linear combination of the three basis functions on the reference element \(X\).

\[x = F_j(X)= \sum_{i=0}^2 \mathbf{p}_i \phi_i(X).\]

In the next snippet we will create a function to compute x given the three points and a set of reference coordinates

def compute_physical_point(p0, p1, p2, X):
    """
    Map coordinates `X` in reference element to triangle defined by `p0`, `p1` and `p2`
    """
    el = basix.ufl.element("Lagrange", "triangle", 1)
    basis_values = el.tabulate(0, X)
    x = basis_values[0] @ np.vstack([p0, p1, p2])
    return x

We can now experiment with this code

p0 = np.array([2.0, 1.8])
p1 = np.array([1.0, 1.2])
p2 = np.array([1.3, 1.0])
x = compute_physical_point(p0, p1, p2, reference_points)
Reference points: [[0.07049245 0.07049245]
 [0.19773226 0.08429537]
 [0.3635668  0.09126483]
 [0.54516837 0.09126483]
 [0.71797237 0.08429537]
 [0.8590151  0.07049245]
 [0.08429537 0.19773226]
 [0.21983534 0.21983534]
 [0.38637247 0.22725505]
 [0.56032931 0.21983534]
 [0.71797237 0.19773226]
 [0.09126483 0.3635668 ]
 [0.22725505 0.38637247]
 [0.38637247 0.38637247]
 [0.54516837 0.3635668 ]
 [0.09126483 0.54516837]
 [0.21983534 0.56032931]
 [0.3635668  0.54516837]
 [0.08429537 0.71797237]
 [0.19773226 0.71797237]
 [0.07049245 0.8590151 ]]
Physical points: [[1.88016284 1.70131057]
 [1.74326098 1.61392435]
 [1.57254782 1.50884806]
 [1.39094625 1.39988711]
 [1.22302087 1.30178028]
 [1.09164018 1.22819698]
 [1.77729205 1.59123697]
 [1.62627992 1.49223052]
 [1.45454899 1.38637247]
 [1.28578595 1.28793414]
 [1.14361504 1.21103077]
 [1.65423841 1.45438766]
 [1.50228422 1.35454899]
 [1.34316679 1.25907854]
 [1.20033487 1.18204554]
 [1.52711731 1.3091064 ]
 [1.38793414 1.21983534]
 [1.25481534 1.14572522]
 [1.41312397 1.17504488]
 [1.29968708 1.10698275]
 [1.32819698 1.07049245]]

We use matplotlib to visualize the reference points and the physical points

Hide code cell source
import matplotlib.pyplot as plt

theta = 2 * np.pi
phi = np.linspace(0, theta, reference_points.shape[0])
rgb_cycle = (
    np.stack((np.cos(phi), np.cos(phi - theta / 4), np.cos(phi + theta / 4))).T + 1
) * 0.5  # Create a unique colors for each node

fig, (ax_ref, ax) = plt.subplots(2, 1)
# Plot reference points
reference_vertices = basix.cell.geometry(basix.CellType.triangle)
ref_triangle = plt.Polygon(reference_vertices, color="blue", alpha=0.2)
ax_ref.add_patch(ref_triangle)
ax_ref.scatter(reference_points[:, 0], reference_points[:, 1], c=rgb_cycle)
# Plot physical points
vertices = np.vstack([p0, p1, p2])
triangle = plt.Polygon(vertices, color="blue", alpha=0.2)
ax.add_patch(triangle)
_ = ax.scatter(x[:, 0], x[:, 1], c=rgb_cycle)
../../_images/d3f2b8f1a034dcc2ae79dabed6bbad3277ec55b8404f1d5b21fc5ba583dcf3fd.png

Exercises:#

Mapping of basis functions from the reference element#

As we have already seen, we can describe any cell in our subdivided domain with a mapping from the reference element. However, as we want to integrate over each element individually, we need to map the basis functions to and from the reference element. We call this map: \((\mathcal{F}_j\phi)(x)\).

For scalar valued basis functions, such as the Lagrange basis function, this operation is simple

\[ (\mathcal{F}_j\phi)(x)= \phi(F_j^{-1}(x))=\phi(X). \]

Vector-valued finite elements#

The basis functions we have considered so far have been scalar-valued, i.e. for each DOF \(u_i\) we have a scalar valued basis function \(\phi_i\).

In this section we will consider vector-valued basis functions

\[ \phi_i(x): \mathbb{R}^n \mapsto \mathbb{R}^n. \]

Instead of defining the dual basis \(l_i\) as point evaluations, these dual-basis functions are often defined as integrals over a sub-entity of the reference cell, i.e. an edge, facet or the cell itself.

We will considered the finite element called Nédélec (first kind). For simplicity we will consider the first order element on a triangle, where:

\[ \begin{align*} l_i: \mathbf{v}\mapsto \int_{e_i} \mathbf{v} \cdot \mathbf{t_i}\mathrm{d} s \end{align*} \]

where \(t_i\) is the tangent to the edge \(e_i\).


Nédélec (first kind) basis functions

To preserve the properties of the basis functions from the reference element to the physical element, we use the covariant Piola map:

\[ \begin{align*} (\mathcal{F}_j^{\text{curl}}\phi)(x):= J_j^{-T} \phi(F_j^{-1}(x)) \end{align*} \]

The noteable feature of this map is that it preserves the tangential component of the basis function. We start by computing the Jacobian of the mapping from the reference element to the physical element.

Tabulating vector valued basis functions with basix

When the basis function is vector-valued, basix returns the basis functions with the shape (num_derivatives, num_points, vector_dimension, num_basis_functions).

Exercise: Compute the Jacobian of the mapping from the reference element to the physical element at a single point in the reference element#

Expand to reveal the solution

Hide code cell source
# Get some points in the reference element
X = basix.create_lattice(basix.CellType.triangle, 8, basix.LatticeType.equispaced, exterior=True)
num_points, tdim = X.shape

# Tabulate basis function for the coordiante element
el = basix.ufl.element("Lagrange", "triangle", 1)
basis_derivatives = el.tabulate(1, X)[1:]

# Stack the vertices in a matrix
points = np.vstack([p0, p1, p2])

# Compute the basis derivatives in x and y direction at each point in X
dphi_dx = basis_derivatives[0] @ points
dphi_dy = basis_derivatives[1] @ points
# The Jacobian is a (2, 2) tensor at each point
jacobian = np.transpose(np.hstack([dphi_dx, dphi_dy]).reshape(num_points, tdim, tdim), (0, 2, 1))

# We could alternatively use Einstein summation notation
dphidx = el.tabulate(1, X[0:1])[1:].reshape(2, 3)
jac0 = np.einsum("ij,ki->jk", points, dphidx)
np.testing.assert_allclose(jacobian[0], jac0)

Exercise: Compute \(J^{-T}\)#

Expand to reveal the solution

Hide code cell source
jacobian_inverse = np.linalg.inv(jacobian)
J_inv_T = np.transpose(jacobian_inverse, (0, 2, 1))

Exercise: Tabulate the basis functions of a first order Nedelec element on the reference element#

Expand to reveal the solution

Hide code cell source
nedelec_el = basix.ufl.element("N1curl", "triangle", 1)
ref_basis = nedelec_el.tabulate(0, X).reshape(num_points, tdim, nedelec_el.dim,)

physical_basis = np.zeros((num_points, points.shape[1], nedelec_el.dim))
for i in range(num_points):
    physical_basis[i] = J_inv_T[i] @ ref_basis[i]
physical_basis = np.transpose(physical_basis, (2, 0, 1))

We can visualize the basis functions side by side

Hide code cell source
x = compute_physical_point(p0, p1, p2, X)
import matplotlib.pyplot as plt
phi = np.linspace(0, theta, num_points)
theta = 2 * np.pi
rgb_cycle = (
    np.stack((np.cos(phi), np.cos(phi - theta / 4), np.cos(phi + theta / 4))).T + 1
) * 0.5  # Create a unique colors for each node
reference_vertices = basix.cell.geometry(basix.CellType.triangle)

for i in range(nedelec_el.dim):
    fig, axes = plt.subplots(1, 2)
    fig.suptitle('Nedelec basis functions of reference and physical cell', fontsize=16)
    ref_triangle = plt.Polygon(reference_vertices, color="blue", alpha=0.2)
    triangle = plt.Polygon(points, color="blue", alpha=0.2)
    axes[0].add_patch(ref_triangle)
    axes[0].scatter(X[:,0], X[:,1], color=rgb_cycle, label="Reference points")
    axes[0].quiver(X[:, 0], X[:, 1], ref_basis[:, 0, i], ref_basis[:, 1, i])
    axes[0].set_title(r"$\phi_{i}$".format(i="{"+str(i)+"}"))
    axes[0].set_aspect('equal', 'box')

    axes[1].set_title(r"$\mathcal{F}"+r"\phi_{i}$".format(i="{"+str(i)+"}")) 
    axes[1].scatter(x[:,0], x[:,1], color=rgb_cycle, label="Physical points")
    axes[1].quiver(x[:, 0], x[:, 1], physical_basis[i, :, 0], physical_basis[i, :, 1])
    axes[1].add_patch(triangle)
    axes[1].set_aspect('equal', 'box')
    plt.show()
../../_images/2e228cfa7b665a5ef587620d40c80241e31ab2b78c6c0d33943b385b348cfeb2.png ../../_images/37fe5b9738b24edcf1bdea93f2e6abb0188c5f26ec2b1f2004311255bf74030b.png ../../_images/ffaec0006ee53b9986fd64d8ab7aad629eb2c79d29768e7fa07e2b050811e81e.png

Exercise#

References#