Coupling PDEs of multiple dimensions

Coupling PDEs of multiple dimensions#

In the previous section, we considered problems where we solved non-coupled physics on two parts of a domain. However, the problems we actually want to considered are problems that are coupled across domains.

In this section we will cover how to couple PDEs formulated in the domain (2D) with those living on a subset of facets (1D). This can naturally be extended to 3D.

In this section, we will show how to solve the Signorini problem

\[\begin{split} \begin{align*} \nabla \cdot (C \epsilon(\mathbf{u})) &= \mathbf{f} \text{ in } \Omega\\ \mathbf{u} &= \mathbf{u}_D \text{ on } \delta\Omega_D \\ C\epsilon(\mathbf{u})\mathbf{n} &= 0 \text{ on } \delta\Omega_N\\ \mathbf{u}\cdot \hat{\mathbf{n}} &\leq g \text{ on } \Gamma\\ \sigma_n(\mathbf{u}) &= (C\epsilon(\mathbf{u})\mathbf{n})\cdot \mathbf{n}\\ \sigma_n(\mathbf{u}) \mathbf{n} &\leq 0 \text{ on } \Gamma\\ \sigma_n(\mathbf{u})(\mathbf{u}\cdot \hat{\mathbf{n}}-g) &= 0 \text{ on } \Gamma \end{align*} \end{split}\]

where \(\mathbf{u}\) is the displacement, \(C\) the stiffness tensor, \(\epsilon\) the symmetric strain tensor and \(\mathbf{f}\) the body force.

In this tutorial we will consider a half circle, where we apply a displacement on the top boundary, and let the curved boundary be a potential contact boundary. We define a rigid surface as a plane at \(y=-h\), where \(h\in \mathbb{R}\)

As seen in Meshes from external sources, we can use GMSH to create such a geometry.

Hide code cell source
from mpi4py import MPI
import dolfinx
import gmsh
import numpy as np
import ufl

gmsh_model_rank = 0
mesh_comm = MPI.COMM_WORLD
c_y = 1
R = 0.5
potential_contact_marker = 2
displacement_marker = 1
res = 0.2
order = 2
refinement_level = 2

# Initialize gmsh
gmsh.initialize()
if MPI.COMM_WORLD.rank == 0:
    # Create disk and subtract top part
    membrane = gmsh.model.occ.addDisk(0, c_y, 0, R, R)
    square = gmsh.model.occ.addRectangle(-R, c_y, 0, 2 * R, 1.1 * R)
    gmsh.model.occ.synchronize()
    new_tags, _ = gmsh.model.occ.cut([(2, membrane)], [(2, square)])
    gmsh.model.occ.synchronize()

    # Split boundary into two components
    boundary = gmsh.model.getBoundary(new_tags, oriented=False)
    contact_boundary = []
    dirichlet_boundary = []
    for bnd in boundary:
        mass = gmsh.model.occ.getMass(bnd[0], bnd[1])
        if np.isclose(mass, np.pi * R):
            contact_boundary.append(bnd[1])
        elif np.isclose(mass, 2 * R):
            dirichlet_boundary.append(bnd[1])
        else:
            raise RuntimeError("Unknown boundary")

    # Tag physical groups for the surface
    for i, tags in enumerate(new_tags):
        gmsh.model.addPhysicalGroup(tags[0], [tags[1]], i+1)

    # Tag physical groups for the boundary
    gmsh.model.add_physical_group(1, contact_boundary, potential_contact_marker)
    gmsh.model.add_physical_group(1, dirichlet_boundary, displacement_marker)

    # Create higher resolution mesh at the contact boundary
    distance_field = gmsh.model.mesh.field.add("Distance")
    gmsh.model.mesh.field.setNumbers(distance_field, "EdgesList", contact_boundary)
    threshold = gmsh.model.mesh.field.add("Threshold")
    gmsh.model.mesh.field.setNumber(threshold, "IField", distance_field)
    gmsh.model.mesh.field.setNumber(threshold, "LcMin", res)
    gmsh.model.mesh.field.setNumber(threshold, "LcMax", 20 * res)
    gmsh.model.mesh.field.setNumber(threshold, "DistMin", 0.075 * R)
    gmsh.model.mesh.field.setNumber(threshold, "DistMax", 0.5 * R)
    gmsh.model.mesh.field.setAsBackgroundMesh(threshold)

    # Generate mesh, make second order and refine
    gmsh.model.mesh.generate(2)
    gmsh.model.mesh.setOrder(order)
    for _ in range(refinement_level):
        gmsh.model.mesh.refine()
        gmsh.model.mesh.setOrder(order)
Hide code cell output
Info    : [  0%] Difference                                                                                  
Info    : [ 10%] Difference                                                                                  
Info    : [ 20%] Difference - Performing Vertex-Face intersection                                                                                
Info    : [ 30%] Difference                                                                                  
Info    : [ 40%] Difference                                                                                  
Info    : [ 50%] Difference                                                                                  
Info    : [ 60%] Difference                                                                                  
Info    : [ 70%] Difference                                                                                  
Info    : [ 80%] Difference - Making faces                                                                                
Info    : [ 90%] Difference                                                                                  
                                                                                
Info    : Meshing 1D...
Info    : [  0%] Meshing curve 1 (Ellipse)
Info    : [ 60%] Meshing curve 2 (Line)
Info    : Done meshing 1D (Wall 0.000270154s, CPU 0.000285s)
Info    : Meshing 2D...
Info    : Meshing surface 1 (Plane, Frontal-Delaunay)
Info    : Done meshing 2D (Wall 0.00144534s, CPU 0.000586s)
Info    : 57 nodes 114 elements
Info    : Meshing order 2 (curvilinear on)...
Info    : [  0%] Meshing curve 1 order 2
Info    : [ 40%] Meshing curve 2 order 2
Info    : [ 70%] Meshing surface 1 order 2
Info    : Surface mesh: worst distortion = 1 (0 elements in ]0, 0.2]); worst gamma = 0.839697
Info    : Done meshing order 2 (Wall 0.00049902s, CPU 0.000587s)
Info    : Refining mesh...
Info    : Meshing order 2 (curvilinear on)...
Info    : [  0%] Meshing curve 1 order 2
Info    : [ 40%] Meshing curve 2 order 2
Info    : [ 70%] Meshing surface 1 order 2
Info    : Surface mesh: worst distortion = 1 (0 elements in ]0, 0.2]); worst gamma = 0.839697
Info    : Done meshing order 2 (Wall 0.000157723s, CPU 0.000211s)
Info    : Done refining mesh (Wall 0.000299027s, CPU 0.000358s)
Info    : Meshing order 2 (curvilinear on)...
Info    : [  0%] Meshing curve 1 order 2
Info    : [ 40%] Meshing curve 2 order 2
Info    : [ 70%] Meshing surface 1 order 2
Info    : Surface mesh: worst distortion = 1 (0 elements in ]0, 0.2]); worst gamma = 0.839697
Info    : Done meshing order 2 (Wall 0.00118589s, CPU 0.001236s)
Info    : Refining mesh...
Info    : Meshing order 2 (curvilinear on)...
Info    : [  0%] Meshing curve 1 order 2
Info    : [ 40%] Meshing curve 2 order 2
Info    : [ 70%] Meshing surface 1 order 2
Info    : Surface mesh: worst distortion = 1 (0 elements in ]0, 0.2]); worst gamma = 0.839697
Info    : Done meshing order 2 (Wall 0.000540908s, CPU 0.000584s)
Info    : Done refining mesh (Wall 0.00089071s, CPU 0.000961s)
Info    : Meshing order 2 (curvilinear on)...
Info    : [  0%] Meshing curve 1 order 2
Info    : [ 40%] Meshing curve 2 order 2
Info    : [ 70%] Meshing surface 1 order 2
Info    : Surface mesh: worst distortion = 1 (0 elements in ]0, 0.2]); worst gamma = 0.839697
Info    : Done meshing order 2 (Wall 0.00331795s, CPU 0.002021s)
# We inspect the generated mesh and markers
omega, ct, ft = dolfinx.io.gmshio.model_to_mesh(gmsh.model, mesh_comm, gmsh_model_rank, gdim=2)
gmsh.finalize()
Hide code cell source
import sys, os

import pyvista

if sys.platform == "linux" and (os.getenv("CI") or pyvista.OFF_SCREEN):
    pyvista.start_xvfb(0.05)


def plot_mesh(mesh: dolfinx.mesh.Mesh, tags: dolfinx.mesh.MeshTags=None,
              style:str = "surface"):
    plotter = pyvista.Plotter()
    tdim = mesh.topology.dim
    mesh.topology.create_connectivity(tdim-1, tdim)
    if tags is None:
        ugrid = pyvista.UnstructuredGrid(*dolfinx.plot.vtk_mesh(mesh))
    else:
        # Exclude indices marked zero
        exclude_entities = tags.find(0)
        marker = np.full_like(tags.values, True, dtype=np.bool_)
        marker[exclude_entities] = False
        ugrid = pyvista.UnstructuredGrid(*dolfinx.plot.vtk_mesh(mesh, tags.dim, tags.indices[marker]))
        ugrid.cell_data[ct.name] = tags.values[marker]

    plotter.add_mesh(ugrid, show_edges=True, line_width=3, style=style)
    plotter.show_axes()
    plotter.view_xy()
    plotter.show_bounds()
    plotter.show()

plot_mesh(omega, ct, style="wireframe")
plot_mesh(omega, ft)

Variational formulation#

We will use a formulation of this problem based on [KS24] and [DPEKS24]. We phrase this problem as a minimization problem, where we seek to find the displacement \(\mathbf{u}\) that minimizes the functional

\[ \min_{\mathbf{u}\in \mathcal{K}} J(\mathbf{u}) = \frac{1}{2} \int_\Omega (C\epsilon(\mathbf{u}):\epsilon(\mathbf{v}))~\mathrm{d}x - \int_\Omega \mathbf{f}\cdot \mathbf{u}~\mathrm{d}x \]

where $\( \mathcal{K} = \{ \mathbf{u}\in V_{\mathbf{u}_D} \vert \mathbf{u}\cdot \hat{\mathbf{n}} \leq g \} \)$

With this re-formulation, we can write a mixed finite element method, where we use two variables, the displacement \(\mathbf{u}\in V(\Omega)\) and a latent variable \(\psi \in Q(\Gamma)\)/

Co-dimension 1 problem

We note that since \(\Gamma\) is the whole curved boundary, we need to solve a mixed dimensional finite element problem.

We choose \(V\) to be a P-th order vector Lagrange space, while \(Q\) is a Pth order scalar Lagrange field. We start by defining the sub-mesh using the read in mesh markers

tdim = omega.topology.dim
fdim = tdim - 1
gdim = omega.geometry.dim
gamma, gamma_to_omega = dolfinx.mesh.create_submesh(omega, fdim, ft.find(potential_contact_marker))[
        0:2]

Next, we define the function spaces, and combine them in a block structure using ufl.MixedFunctionSpace

V = dolfinx.fem.functionspace(omega, ("Lagrange", 1, (omega.geometry.dim, )))
Q = dolfinx.fem.functionspace(gamma, ("Lagrange", 1))
W = ufl.MixedFunctionSpace(V, Q)

We can write the variational formulation as Given \(\alpha_k\), \(\psi_{k-1}\), solve:

\[\begin{split} \begin{align*} \alpha_k(\sigma(\mathbf{u}), \epsilon(\mathbf{v}))_\Omega - (\psi, \mathbf{v}\cdot \mathbf{n})_\Gamma &= -\alpha_k(\mathbf{f}, v)_\Omega - (\psi^{k-1}, \mathbf{v}\cdot \mathbf{n})_\Gamma\\ (\mathbf{u}\cdot \mathbf{n}, w)_\Gamma - (e^{\psi}, w)_\Gamma &= (g, w)_\Gamma \end{align*} \end{split}\]
  • Check for convergence.

  • Update latent variable \(\psi^{k-1}\), \(\alpha_k\).

As discussed in the previous chapter, we need to choose a mesh to integrate over. As we would like to exploit the definition of the n=ufl.FacetNormal(\Omega) in our variational problem, we choose the integration domain to be \(\Omega\). This means that we have to create a map from each facet in \(\Omega\) to the corresponding facet in \(\Gamma\).

facet_imap = omega.topology.index_map(ft.dim)
num_facets = facet_imap.size_local + facet_imap.num_ghosts
omega_to_gamma = np.full(num_facets, -1)
omega_to_gamma[gamma_to_omega] = np.arange(len(gamma_to_omega))
entity_maps = {gamma: omega_to_gamma}
# -

Next, we define the integration measures

dx = ufl.Measure("dx", domain=omega)
ds = ufl.Measure("ds", domain=omega, subdomain_data=ft,
                 subdomain_id=potential_contact_marker)

Note

Integration over \(\Gamma\) Note that we have restricted the ds integration measure to the boundary \(\Gamma\), where \(Q\) is defined.

Next, we define some problem specific parameters

E = dolfinx.fem.Constant(omega, dolfinx.default_scalar_type(2e4))
nu = dolfinx.fem.Constant(omega, 0.4)
alpha = dolfinx.fem.Constant(omega, dolfinx.default_scalar_type(0.1))

As we define the rigid surface as a plane at \(y=-h\), we can define the gap between the undeformed geometry with coordinates (x, y) and the surface as

h = 0.13
x, y = ufl.SpatialCoordinate(omega)
g = y + dolfinx.fem.Constant(omega, dolfinx.default_scalar_type(h))
uD = 0.72

Similarly, we have that \(\hat n = (0, -1)\)

n = ufl.FacetNormal(omega)
n_g = dolfinx.fem.Constant(omega, np.zeros(gdim, dtype=dolfinx.default_scalar_type))
n_g.value[-1] = -1
f = dolfinx.fem.Constant(omega, np.zeros(gdim, dtype=dolfinx.default_scalar_type))

We can write the residual of the variational form

v, w = ufl.TestFunctions(W)
u = dolfinx.fem.Function(V, name="Displacement")
psi = dolfinx.fem.Function(Q, name="Latent_variable")
psi_k = dolfinx.fem.Function(Q, name="Previous_Latent_variable")

mu = E / (2.0 * (1.0 + nu))
lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))

def epsilon(w):
    return ufl.sym(ufl.grad(w))

def sigma(w, mu, lmbda):
    ew = epsilon(w)
    gdim = ew.ufl_shape[0]
    return 2.0 * mu * epsilon(w) + lmbda * ufl.tr(ufl.grad(w)) * ufl.Identity(gdim)


F = alpha * ufl.inner(sigma(u, mu, lmbda), epsilon(v)) * dx
F -= alpha * ufl.inner(f, v) * dx
F += -ufl.inner(psi - psi_k, ufl.dot(v, n)) * ds
F += ufl.inner(ufl.dot(u, n_g), w) * ds
F += ufl.inner(ufl.exp(psi), w) * ds - ufl.inner(g, w) * ds
residual = dolfinx.fem.form(ufl.extract_blocks(F), entity_maps=entity_maps)

Similarly, we can write the Jacobian

du, dpsi = ufl.TrialFunctions(W)
jac = ufl.derivative(F, u, du) + ufl.derivative(F, psi, dpsi)
J = dolfinx.fem.form(ufl.extract_blocks(jac), entity_maps=entity_maps)

Jacobian for mixed function spaces

Note that we differentiate with respect to the function in the respective “sub space”, \(V\) and \(Q\), but use trial functions form \(W\). This is to be able to extract blocks when creating the form for the Jacobian.

We define the displacement on the top boundary as we have done in previous tutorials. However, as we are using a ufl.MixedFunctionSpace, we can define the boundary condition with the appropriate sub-space without a mapping.

def disp_func(x):
    values = np.zeros((gdim, x.shape[1]), dtype=dolfinx.default_scalar_type())
    values[1] = -uD
    return values

u_bc = dolfinx.fem.Function(V)
u_bc.interpolate(disp_func)
bc = dolfinx.fem.dirichletbc(
    u_bc, dolfinx.fem.locate_dofs_topological(V, fdim, ft.find(displacement_marker)))
bcs = [bc]

To solve this problem, we will use PETSc. We use the following wrapper to solve the problem

Hide code cell source
from petsc4py import PETSc
import warnings
import dolfinx.fem.petsc

class NewtonSolver:
    max_iterations: int
    bcs: list[dolfinx.fem.DirichletBC]
    A: PETSc.Mat
    b: PETSc.Vec
    J: dolfinx.fem.Form
    b: dolfinx.fem.Form
    dx: PETSc.Vec
    error_on_nonconvergence: bool

    def __init__(
        self,
        F: list[dolfinx.fem.form],
        J: list[list[dolfinx.fem.form]],
        w: list[dolfinx.fem.Function],
        bcs: list[dolfinx.fem.DirichletBC] | None = None,
        max_iterations: int = 5,
        petsc_options: dict[str, str | float | int | None] = None,
        error_on_nonconvergence: bool = True,
    ):
        """Newton solver for blocked nonlinear problems.

        Note:
            Special feature of this solver is that it only measures the norm of the primal space
            increments when checking convergence (primal being the first space in the block).

        :param F: Residual on block form
        :param J: Block formulation of Jacobian
        :param w: List of solution vectors
        :param bcs: List of Dirichlet boundary conditions
        :param max_iterations: Max Newton iterations
        :param petsc_options: Krylov subspace solver options
        :param error_on_nonconvergence: Throw error if solver doesn't converge.
        """
        self.max_iterations = max_iterations
        self.bcs = [] if bcs is None else bcs
        self.b = dolfinx.fem.petsc.create_vector_block(F)
        self.F = F
        self.J = J
        self.A = dolfinx.fem.petsc.create_matrix_block(J)
        self.dx = dolfinx.fem.petsc.create_vector_block(F)
        self.w = w
        self.x = dolfinx.fem.petsc.create_vector_block(F)
        self.norm_array = dolfinx.fem.Function(w[0].function_space)
        self.error_on_nonconvergence = error_on_nonconvergence
        # Set PETSc options
        opts = PETSc.Options()
        if petsc_options is not None:
            for k, v in petsc_options.items():
                opts[k] = v

        # Define KSP solver
        self._solver = PETSc.KSP().create(self.b.getComm().tompi4py())
        self._solver.setOperators(self.A)
        self._solver.setFromOptions()

        # Set matrix and vector PETSc options
        self.A.setFromOptions()
        self.b.setFromOptions()

    def _update_solution(self, beta):
        """Update solution vector ``w`` and internal variable ``x``.

        Two steps are performed:
        1. Update local arrays in ``w`` with the correction ``dx``.
        2. Scatter local arrays to global vector ``x``.
        """
        maps = [
            (
                si.function_space.dofmap.index_map,
                si.function_space.dofmap.index_map_bs,
            )
            for si in self.w
        ]
        # Get local vectors and update ``w`` with correction
        local_dx = dolfinx.cpp.la.petsc.get_local_vectors(self.dx, maps)
        for ldx, s in zip(local_dx, self.w):
            s.x.array[:] -= beta * ldx
            s.x.scatter_forward()

        # Scatter local vectors to blocked vector
        dolfinx.cpp.la.petsc.scatter_local_vectors(
            self.x, [si.x.petsc_vec.array_r for si in self.w], maps
        )
        self.x.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

    def solve(self, tol=1e-6, beta=1.0) -> int:
        """Solve nonlinear problem

        Args:
            tol: Stopping tolerance for primal variable update
            beta: Step-size

        Raises:
            RuntimeError: If solver doesn't converge and ``error_on_nonconvergence=True``

        Returns:
            Number of iterations. If Krylov subspace solver doesn't converge, return 0.
        """
        i = 1
        blocked_maps = [
            (
                si.function_space.dofmap.index_map,
                si.function_space.dofmap.index_map_bs,
            )
            for si in self.w
        ]
        while i <= self.max_iterations:
            # Assemble F(u_{i-1}) - J(u_D - u_{i-1}) and set du|_bc= u_D - u_{i-1}
            with self.b.localForm() as b_loc:
                b_loc.set(0)
            try:
                dolfinx.fem.petsc.assemble_vector_block(
                    self.b, self.F, self.J, bcs=self.bcs, x0=self.x, scale=-1.0
                )
            except TypeError:
                dolfinx.fem.petsc.assemble_vector_block(
                    self.b, self.F, self.J, bcs=self.bcs, x0=self.x, alpha=-1.0
                )
            self.b.ghostUpdate(PETSc.InsertMode.INSERT_VALUES, PETSc.ScatterMode.FORWARD)

            # Assemble Jacobian
            self.A.zeroEntries()
            dolfinx.fem.petsc.assemble_matrix_block(self.A, self.J, bcs=self.bcs)
            self.A.assemble()

            # Solve linear system for correction
            with self.dx.localForm() as dx_loc:
                dx_loc.set(0)
            self._solver.solve(self.b, self.dx)
            self.dx.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
            # Check for convergence
            converged_reason = self._solver.getConvergedReason()
            if self.error_on_nonconvergence:
                assert (
                    converged_reason > 0
                ), f"Linear solver did not converge, received reason {converged_reason}"
            else:
                warnings.warn(f"Linear solver did not converge, reason {converged_reason} exiting", RuntimeWarning)
                return 0

            # Update solution
            self._update_solution(beta)


            # Compute norm of primal space diff
            local_du, _ = dolfinx.cpp.la.petsc.get_local_vectors(self.dx, blocked_maps)
            self.norm_array.x.array[:] = local_du
            self.norm_array.x.petsc_vec.ghostUpdate(
                PETSc.InsertMode.INSERT_VALUES, PETSc.ScatterMode.FORWARD
            )
            self.norm_array.x.petsc_vec.normBegin(1)
            correction_norm = self.norm_array.x.petsc_vec.normEnd(1)

            print(f"Iteration {i}: Correction norm {correction_norm}")
            if correction_norm < tol:
                break
            i += 1
        if self.error_on_nonconvergence and i == self.max_iterations:
            raise RuntimeError("Newton solver did not converge")
        return i

We want to consider the Von-Mises stresses in post-processing, and use DOLFINx Expression to interpolate the stresses into an appropriate function space.

V_DG = dolfinx.fem.functionspace(omega, ("DG", 1, (omega.geometry.dim,)))
stress_space, stress_to_disp = V_DG.sub(0).collapse()
von_mises = dolfinx.fem.Function(stress_space, name="von_Mises")
u_dg = dolfinx.fem.Function(V_DG, name="u")
s = sigma(u, mu, lmbda) - 1.0 / 3 * ufl.tr(sigma(u, mu, lmbda)) * ufl.Identity(
    len(u)
)
von_Mises = ufl.sqrt(3.0 / 2 * ufl.inner(s, s))
stress_expr = dolfinx.fem.Expression(von_Mises, stress_space.element.interpolation_points())

We can now set up the solver and solve the problem

solver = NewtonSolver(
    residual,
    J,
    [u, psi],
    bcs=bcs,
    max_iterations=25,
    petsc_options={
        "ksp_type": "preonly",
        "pc_type": "lu",
        "pc_factor_mat_solver_type": "mumps",
        "mat_mumps_icntl_14": 120,
        "ksp_error_if_not_converged": True,
    },
    error_on_nonconvergence=True,
)

Note that all memory is assigned outside the for-lopp. In this problem, we measure the norm of the change in the primal space, rather than the for the mixed function.

max_iterations = 25
normed_diff = 0
tol = 1e-5
u_prev = dolfinx.fem.Function(V)
diff = dolfinx.fem.Function(V)
for it in range(max_iterations):
    print(f"{it=}/{max_iterations} {normed_diff:.2e}")
    # Solve the first iterations inaccurately
    solver_tol = 100*tol if it < 3 else tol
    converged = solver.solve(solver_tol, 1)

    diff.x.array[:] = u.x.array - u_prev.x.array
    diff.x.petsc_vec.normBegin(2)
    normed_diff = diff.x.petsc_vec.normEnd(2)
    if normed_diff <= tol and it >=3:
        print(f"Converged at {it=} with increment norm {normed_diff:.2e}<{tol:.2e}")
        break
    u_prev.x.array[:] = u.x.array
    psi_k.x.array[:] = psi.x.array
    if not converged:
        print(f"Solver did not convert at {it=}, exiting with {converged=}")
        break
it=0/25 0.00e+00
Iteration 1: Correction norm 19.75603520918023
Iteration 2: Correction norm 0.0020541893014397712
Iteration 3: Correction norm 0.0032824903576515814
Iteration 4: Correction norm 0.010567366459077002
Iteration 5: Correction norm 0.7826663660541742
Iteration 6: Correction norm 0.28180190008178135
Iteration 7: Correction norm 0.0003624695477901472
it=1/25 1.91e+01
Iteration 1: Correction norm 0.0029443433068172785
Iteration 2: Correction norm 0.0001222423005396523
it=2/25 2.88e-03
Iteration 1: Correction norm 6.454429854631308e-05
it=3/25 6.45e-05
Iteration 1: Correction norm 1.1308753015128175e-05
Iteration 2: Correction norm 2.0675218317521407e-05
Iteration 3: Correction norm 1.198927556775523e-07
it=4/25 3.19e-05
Iteration 1: Correction norm 2.6758383762843034e-05
Iteration 2: Correction norm 6.107902701558581e-06
it=5/25 2.07e-05
Iteration 1: Correction norm 1.4332322165873925e-05
Iteration 2: Correction norm 2.3843265682231737e-06
it=6/25 1.19e-05
Iteration 1: Correction norm 9.47839641376783e-06
Converged at it=6 with increment norm 9.48e-06<1.00e-05
if it == max_iterations - 1:
    print(f"Did not converge within {max_iterations} iterations")

We compute the von-Mises stresses for the final solution

von_mises.interpolate(stress_expr)

Additionally, we interpolate the displacement onto a DG function space for compatible visualization in Pyvista.

u_dg.interpolate(u)
Hide code cell source
import sys, os

import pyvista

if sys.platform == "linux" and (os.getenv("CI") or pyvista.OFF_SCREEN):
    pyvista.start_xvfb(0.05)
grid = dolfinx.plot.vtk_mesh(u_dg.function_space)
pyvista_grid = pyvista.UnstructuredGrid(*grid)
values = u_dg.x.array.reshape(-1, omega.geometry.dim)
values_padded = np.zeros((values.shape[0], 3))
values_padded[:, :omega.geometry.dim] = values
pyvista_grid.point_data["u"] = values_padded
warped = pyvista_grid.warp_by_vector("u")
stresses = np.zeros_like(u_dg.x.array)
stresses[stress_to_disp]= von_mises.x.array
stresses = stresses.reshape(-1, omega.geometry.dim)[:, 0]
warped.point_data["von_Mises"] = stresses

plotter = pyvista.Plotter()
plotter.add_mesh(pyvista_grid, style="wireframe", color="b")
plotter.add_mesh(warped, scalars="von_Mises", lighting=True, show_edges=True)
plotter.show_bounds()
plotter.view_xy()
plotter.show()

References#

[DPEKS24]

J.S. Dokken, Farrell P.E., B. Keith, and T.M. Surowiec. The latent variable proximal point algorithm for problems with pointwise constraints. 2024.

[KS24]

Brendan Keith and Thomas M. Surowiec. Proximal galerkin: a structure-preserving finite element method for pointwise bound constraints. 2024. URL: https://arxiv.org/abs/2307.12444, arXiv:2307.12444.