The standard way of compiling code with DOLFINx#
In this section, we will focus on the approach most users use to interact with UFL, FFCx and basix. Here we will start by creating the domain we want to solve a problem on. In this case, we will use a unit square
from mpi4py import MPI
import dolfinx
import ufl
import numpy as np
import scipy
N = 10
mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, N, N)
tdim = mesh.topology.dim
Problem specification: Non-linear Poisson.#
Next, let’s consider the problem
where \(p(u)=1+u^2\). We choose to use a first order Lagrange space for the unknown.
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 1))
Alternative declaration of finite elements
When working in DOLFINx, we can also supply the element information directly to the function space
with a tuple (family, degree)
, or a triplet (family, degree, shape)
, i.e. if we want a M dimensional
Lagrange 5th order vector space, one could specify this as ("Lagrange", 5, (M, ))
.
We do as in the previous section, and define a manufactured solution
def u_exact(module, x):
return module.sin(2 * module.pi * x[1]) + x[0] * x[1] ** 2
x = ufl.SpatialCoordinate(mesh)
u_ex = u_exact(ufl, x)
As the problem is non-linear we need to prepare for solving this with a Newton-solver.
uh = dolfinx.fem.Function(V)
We define the residual
def p(u):
return 1 + u**2
f = -ufl.div(p(u_ex) * ufl.grad(u_ex))
v = ufl.TestFunction(V)
F = ufl.inner(p(uh) * ufl.grad(uh), ufl.grad(v)) * ufl.dx - ufl.inner(f, v) * ufl.dx
gh = dolfinx.fem.Function(V)
gh.interpolate(lambda x: u_exact(np, x))
mesh.topology.create_entities(tdim - 1)
mesh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = dolfinx.mesh.exterior_facet_indices(mesh.topology)
boundary_dofs = dolfinx.fem.locate_dofs_topological(V, tdim - 1, boundary_facets)
bc = dolfinx.fem.dirichletbc(gh, boundary_dofs)
bcs = [bc]
We compute the Jacobian of the system using UFL.
J = ufl.derivative(F, uh)
Now that we have associated the forms with the discrete problem already, we use
dolfinx.fem.form
residual = dolfinx.fem.form(F)
jacobian = dolfinx.fem.form(J)
A = dolfinx.fem.create_matrix(jacobian)
b = dolfinx.fem.create_vector(residual)
We are now ready to use these forms to solve the variational problem.
As we want \(u_{k+1}=g\), but we do not know if \(u_k=g\), we need to take this into account when assembling the right hand side for the Jacobian equation.
We will go through how we apply this boundary condition using lifting
Lifting#
Let us split the degrees of freedom into two disjoint sets, \(u_d\), and \(u_{bc}\), and set up the corresponding linear system
In the identity row approach, we set the rows corresponding to the Dirichlet conditions to the identity row and set the appropriate dofs on the right hand side to contain the Dirichlet values:
where \(g\) is the vector satisfying the various Dirichlet conditions. We can now reduce this to a smaller system
which is symmetric if \(A_{d,d}\) is symmetric. However, we do not want to remove the degrees of freedom from the sparse matrix, as it makes the matrix less adaptable for varying boundary conditions, so we set up the system
We start by zeroing out existing entries in the right hand side.
b.array[:] = 0
Next we assemble the residual into b
dolfinx.fem.assemble_vector(b.array, residual)
array([ 0.03958686, 0.01188388, 0.01710644, -0.02737186, 0.03823091,
-0.23051416, -0.03254705, -0.54959513, 0.03687615, -0.34640994,
-0.03769314, -0.55369695, -0.62745118, 0.03552259, -0.09197282,
-0.04281025, -0.55769458, -0.62269633, -0.09635011, 0.03417021,
0.06913528, -0.04789851, -0.56158922, -0.61787444, -0.09218259,
0.13624624, 0.03281901, 0.09353074, -0.05295803, -0.56538209,
-0.61299092, -0.088331 , 0.12526456, 0.21218638, 0.031469 ,
0.2075149 , -0.05798895, -0.56907438, -0.60805118, -0.08481164,
0.11337486, 0.20059909, 0.4420161 , 0.03012017, 0.19965123,
-0.06299139, -0.5726673 , -0.60306061, -0.08164085, 0.10053814,
0.18813566, 0.45402806, 0.37525153, 0.02877253, 0.21879208,
-0.06796546, -0.57616206, -0.59802463, -0.07883495, 0.08671539,
0.17471618, 0.46704232, 0.37861077, 0.47975947, 0.01960355,
0.3349097 , -0.06727417, -0.57955985, -0.59294864, -0.07641027,
0.0718676 , 0.16026071, 0.48091188, 0.38727936, 0.39495728,
0.45596566, -0.32819296, -0.58783803, -0.07438312, 0.05595578,
0.14468933, 0.49548973, 0.4010077 , 0.32099272, 0.37650491,
-0.25487848, -0.07276983, 0.03894091, 0.12792213, 0.51062887,
0.41954619, 0.25746726, 0.30395982, -0.00428696, 0.020784 ,
0.10987917, 0.52618229, 0.44264523, 0.20398238, 0.23806749,
-0.00737359, 0.09048053, 0.54200299, 0.47005519, 0.16013955,
0.17856505, 0.06979188, 0.55794397, 0.5015265 , 0.12554024,
0.12518961, 0.32131229, 0.53680953, 0.09978595, 0.07767828,
0.24371794, 0.08247813, 0.0357682 , 0.00620004, -0.00080353,
-0.00535419])
We want to apply the condition
since \(u_{k+1} = u_k - \delta u\)
This means that we would like to compute
What does apply lifting do?
Apply lifting will compute
dolfinx.fem.apply_lifting
takes in five arguments:
An array
b
that we will modify the entries ofA list of bi-linear forms
a_j
that assemble into the matrixA_j
A nested list of boundary conditions, where the
j
list of boundary conditions for the forma_j
. We accumulate all these boundary conditions into a single vector \(g_j\).A list of vectors where the \(j\)th entry \(x0_j\) will be subtracted from \(g_j\).
A scalar value \(\alpha\) that determines the magnitude of the modification.
This means that we set \(\alpha=-1\), \(x0=uk\), \(A=J\).
dolfinx.fem.apply_lifting(b.array, [jacobian], [bcs], x0=[uh.x.array], alpha=-1.0)
b.scatter_reverse(dolfinx.la.InsertMode.add)
As for the last part of the application of Dirichlet condtitions, we want to set
\(u_k - g\) for the constrained dofs. We can do this with dolfinx.fem.set_bc
.
What does DirichletBC.set do?
We will replace the entries constrained by the Dirichlet bcs with \(\alpha * (g - x0)\)
where b
, x0
and alpha
are the inputs to bc.set
, where g
is the boundary condition
at those dofs.
For the example at hand, we set \(\alpha=-1\), \(x0=u_k\).
[bc.set(b.array, x0=uh.x.array, alpha=-1.0) for bc in bcs]
[None]
Next, we can compute the assemble the Jacobian
A_scipy = A.to_scipy()
dolfinx.fem.assemble_matrix(A, jacobian, bcs)
<dolfinx.la.MatrixCSR at 0x7fe9cb16e2a0>
Hand-coded Newton solver#
# We are ready to do this iteratively
du = dolfinx.fem.Function(V)
correction_norm = None
for i in range(1, 20):
# Assemble residual
b.array[:] = 0
dolfinx.fem.assemble_vector(b.array, residual)
dolfinx.fem.apply_lifting(b.array, [jacobian], [bcs], x0=[uh.x.array], alpha=-1.0)
b.scatter_reverse(dolfinx.la.InsertMode.add)
[bc.set(b.array, x0=uh.x.array, alpha=-1.0) for bc in bcs]
print(f"Iteration {i}, |F|={np.linalg.norm(b.array)}, |du|={correction_norm}")
# Assemble jacobian
A.data[:] = 0
dolfinx.fem.assemble_matrix(A, jacobian, bcs)
A_inv = scipy.sparse.linalg.splu(A_scipy)
du.x.array[:] = A_inv.solve(b.array)
uh.x.array[:] -= du.x.array
if (correction_norm := np.linalg.norm(du.x.array)) < 1e-6:
print(f"Iteration {i}, Converged: |du|={correction_norm}")
break
Iteration 1, |F|=6.331970827486794, |du|=None
Iteration 2, |F|=3.085561917162284, |du|=7.823179873314087
Iteration 3, |F|=0.3332304295727603, |du|=1.0619315658452844
Iteration 4, |F|=0.0047913468963322, |du|=0.1119568588590222
Iteration 5, |F|=1.1478673543738253e-06, |du|=0.001526192852867471
Iteration 5, Converged: |du|=3.3242674414716e-07
We do as before, and compute the error between the exact and approximate solution.
error = dolfinx.fem.form(ufl.inner(uh - u_ex, uh - u_ex) * ufl.dx)
local_error = dolfinx.fem.assemble_scalar(error)
global_error = np.sqrt(mesh.comm.allreduce(local_error, op=MPI.SUM))
print(f"L2-error: {global_error:.2e}")
L2-error: 2.58e-02
Using scipy’s Newton solver#
Of course we don’t want to write out this kind of loop for every problem.
We can for instance use the newton_krylov
solver from scipy, but instead of
approximating the Jacobian, we will solve the non-linear problem directly.
We do this by overloading the “ksp” method in scipy with a method that only does pre-conditioning,
where the pre-conditioning is to solve the system for the exact Jacobian.
We can do this with the following code:
class NonLinearSolver(scipy.sparse.linalg.LinearOperator):
def __init__(self, F, uh, bcs):
"""
Solve the problem F(uh, v)=0 forall v
"""
jacobian = ufl.derivative(F, uh)
self.J_compiled = dolfinx.fem.form(jacobian)
self.F_compiled = dolfinx.fem.form(F)
self.bcs = bcs
self.A = dolfinx.fem.create_matrix(self.J_compiled)
self.b = dolfinx.fem.Function(uh.function_space)
self._A_scipy = self.A.to_scipy()
self.uh = uh
# Scipy specific parameters
self.shape = (len(uh.x.array), len(uh.x.array))
self.dtype = uh.x.array.dtype
self.update(uh.x.array, None)
def update(self, x, f):
"""Update and invert Jacobian"""
self.A.data[:] = 0
self.uh.x.array[:] = x
dolfinx.fem.assemble_matrix(self.A, self.J_compiled, bcs=self.bcs)
self._A_inv = scipy.sparse.linalg.splu(self._A_scipy)
def _matvec(self, x):
"""Compute J^{-1}x"""
return self._A_inv.solve(x)
def _compute_residual(self, x):
"""
Evaluate the residual F(x) = 0
Args:
x: Input vector with current solution
Returns:
Residual array
"""
self.uh.x.array[:] = x
self.b.x.array[:] = 0
dolfinx.fem.assemble_vector(self.b.x.array, self.F_compiled)
dolfinx.fem.apply_lifting(self.b.x.array, [self.J_compiled], [self.bcs], x0=[self.uh.x.array], alpha=-1.0)
self.b.x.scatter_reverse(dolfinx.la.InsertMode.add)
[bc.set(self.b.x.array, x0=self.uh.x.array, alpha=-1.0) for bc in self.bcs]
return self.b.x.array
def linSolver(self, _A, x, **kwargs):
"""
The linear solver method we will use.
Simply return `J^-1 x` for an input x
"""
return kwargs["M"]._matvec(x), 0
def solve(self, maxiter: int = 100, verbose: bool = False):
"""Call Newton-Krylov solver with direct solving (pre-conditioning only)"""
self.uh.x.array[:] = scipy.optimize.newton_krylov(
self._compute_residual,
self.uh.x.array,
method=self.linSolver,
verbose=verbose,
line_search=None,
maxiter=maxiter,
inner_M=self,
)
Inspect the code above, does it follow what we have described earlier?
Use the Newton solver above to compute convergence rates for the above problem.
See: Error estimation for instruction on how to compute convergence rates
Expand the code above to see the solution.
Show code cell source
Ns = np.array([4, 8, 16, 32])
errors = np.zeros_like(Ns, dtype=np.float64)
hs = np.zeros_like(Ns, dtype=np.float64)
for i, N in enumerate(Ns):
mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, N, N)
tdim = mesh.topology.dim
x = ufl.SpatialCoordinate(mesh)
u_ex = u_exact(ufl, x)
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 1))
uh = dolfinx.fem.Function(V)
f = -ufl.div(p(u_ex) * ufl.grad(u_ex))
v = ufl.TestFunction(V)
F = ufl.inner(p(uh) * ufl.grad(uh), ufl.grad(v)) * ufl.dx - ufl.inner(f, v) * ufl.dx
gh = dolfinx.fem.Function(V)
gh.interpolate(lambda x: u_exact(np, x))
mesh.topology.create_entities(tdim - 1)
mesh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = dolfinx.mesh.exterior_facet_indices(mesh.topology)
boundary_dofs = dolfinx.fem.locate_dofs_topological(V, tdim - 1, boundary_facets)
bc = dolfinx.fem.dirichletbc(gh, boundary_dofs)
bcs = [bc]
solver = NonLinearSolver(F, uh, bcs)
solver.solve(verbose=True)
error = dolfinx.fem.form(ufl.inner(uh - u_ex, uh - u_ex) * ufl.dx)
local_error = dolfinx.fem.assemble_scalar(error)
global_error = np.sqrt(mesh.comm.allreduce(local_error, op=MPI.SUM))
errors[i] = global_error
hs[i] = 1.0 / N
def compute_converence(hs, errors):
return np.log(errors[1:] / errors[:-1]) / np.log(hs[1:] / hs[:-1])
print(f"{hs=}")
print(f"{errors=}")
print(f"{compute_converence(hs, errors)=}")
Show code cell output
0: |F(x)| = 1.60998; step 1
1: |F(x)| = 0.17587; step 1
2: |F(x)| = 0.00271463; step 1
3: |F(x)| = 5.78398e-07; step 1
0: |F(x)| = 1.26328; step 1
1: |F(x)| = 0.179859; step 1
2: |F(x)| = 0.00400358; step 1
3: |F(x)| = 1.70605e-06; step 1
0: |F(x)| = 0.484913; step 1
1: |F(x)| = 0.082938; step 1
2: |F(x)| = 0.00269519; step 1
3: |F(x)| = 1.80485e-06; step 1
0: |F(x)| = 0.161563; step 1
1: |F(x)| = 0.0244575; step 1
2: |F(x)| = 0.000920647; step 1
3: |F(x)| = 8.13442e-07; step 1
hs=array([0.25 , 0.125 , 0.0625 , 0.03125])
errors=array([0.15443872, 0.04018271, 0.01015208, 0.00254469])
compute_converence(hs, errors)=array([1.9423876 , 1.98479959, 1.99621559])
Investigate various degrees for the unknown function space \(V\), how does the convergence rate vary?
It follows the same pattern as we saw in Convergence rates, for a polynomial of degree \(P\) the rate is \(P+1\).
Which of the two strategies for creating variational forms did you prefer?
Depending on your use-case, and if you want to be compatible with C++ codes, the optimal choice is up to the user!